首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   26篇
  333篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   11篇
  2018年   12篇
  2017年   10篇
  2016年   20篇
  2015年   23篇
  2014年   20篇
  2013年   29篇
  2012年   30篇
  2011年   27篇
  2010年   14篇
  2009年   10篇
  2008年   14篇
  2007年   13篇
  2006年   13篇
  2005年   10篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1974年   1篇
排序方式: 共有333条查询结果,搜索用时 0 毫秒
61.
Arp2/3 is a negative regulator of growth cone translocation   总被引:6,自引:0,他引:6  
Arp2/3 is an actin binding complex that is enriched in the peripheral lamellipodia of fibroblasts, where it forms a network of short, branched actin filaments, generating the protrusive force that extends lamellipodia and drives fibroblast motility. Although it has been assumed that Arp2/3 would play a similar role in growth cones, our studies indicate that Arp2/3 is enriched in the central, not the peripheral, region of growth cones and that the growth cone periphery contains few branched actin filaments. Arp2/3 inhibition in fibroblasts severely disrupts actin organization and membrane protrusion. In contrast, Arp2/3 inhibition in growth cones minimally affects actin organization and does not inhibit lamellipodia protrusion or de novo filopodia formation. Surprisingly, Arp2/3 inhibition significantly enhances axon elongation and causes defects in growth cone guidance. These results indicate that Arp2/3 is a negative regulator of growth cone translocation.  相似文献   
62.
Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.  相似文献   
63.
Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on β-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in βTC3 cells, a murine pancreatic β-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in β-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.  相似文献   
64.
The intracellular pH of resting and stimulated muscle was monitored by two independent methods: measurement of pH iniodacetate-treated homogenates of freezeclamped tissue and the absorbance at 550–443 nm of intracellular neutral red dye in vivo. During tetanic stimulation, muscle of phosphorylase kinase-deficient mice shows a transient alkalinization whereas muscle in normal mice becomes more acid under similar conditions. The alkalinization appears to be caused by abnormally rapid AMP deamination associated with adaptation to phosphorylase kinase deficiency.  相似文献   
65.
The production of correctly folded protein in Escherichia coli is often challenging because of aggregation of the overexpressed protein into inclusion bodies. Although a number of general and protein-specific techniques are available, their effectiveness varies widely. We report a novel method for enhancing the solubility of overexpressed proteins. Presence of a dipeptide, glycylglycine, in the range of 100 mM to 1 M in the medium was found to significantly enhance the solubility (up to 170-fold) of the expressed proteins. The method has been validated using mycobacterial proteins, resulting in improved solubilization, which were otherwise difficult to express as soluble proteins in E. coli. This method can also be used to enhance the solubility of other heterologous recombinant proteins expressed in a bacterial system.  相似文献   
66.
Summary Carbonic anhydrase was purified from the gills (CAB) of the rainbow trout Salmo gairdneri and from erythrocytes (CAE) of the fresh water carp Cyprinus carpio. The purification of the isozymes was confirmed by SDS acrylamide gel electrophoresis. Antibodies against the purified CAB and CAE were then raised in rabbits. Specificity was verified by immunoblotting. No cross-reaction was found between them, using the immunodot technique. CAB antiserum was used to specifically localize gill CA in the trout. Immunoperoxidase labelling revealed a concentration of enzyme on the apical region of the outer layer of the gill epithelial cells. The inner layer of the epithelium was only weakly positive. Results obtained using the immuno-gold technique confirmed the immunoperoxidase labelling: there was a concentration of label in the apical regions of chloride cells. In mucous cells, only the mucous granules were labelled. In the lamellae, the label was distributed in the apical part of the pavement cells. The villi and microplicae were strongly positive. CAE antiserum stained the red blood cells. The discrepancy between histochemical localization in the gill or in the opercular skin of killifish and our present immunolocalization was discussed.It was concluded that the most typical localization of CA is on the apical surface of the lamellar epithelium lying in contact with the environment. The result suggests that one of the main roles of gill CA may be to facilitate the diffusion of CO2 from blood to water.  相似文献   
67.
Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing. Thermostable xylanases display high-specific activity at elevated temperatures and distinguish themselves in biochemical properties, structures, and modes of action from their mesophilic counterparts. Natural xylanases can be further improved through genetic engineering. Rapid progress with genome editing, writing, and synthetic biological techniques have provided unlimited potential to produce thermophilic xylanases in their natural hosts or cell factories including bacteria, yeasts, and filamentous fungi. This review will discuss the biotechnological potential of xylanases from thermophilic microorganisms and the ways they are being optimized and produced for various industrial applications.  相似文献   
68.
Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.  相似文献   
69.
70.
A heterologous signal peptide (SP) from Bacillus sp. G1 was optimized for secretion of recombinant cyclodextrin glucanotransferase (CGTase) to the periplasmic and, eventually, extracellular space of Escherichia coli. Eight mutant SPs were constructed using site-directed mutagenesis to improve the secretion of recombinant CGTase. M5 is a mutated SP in which replacement of an isoleucine residue in the h-region to glycine created a helix-breaking or G-turn motif with decreased hydrophobicity. The mutant SP resulted in 110 and 94% increases in periplasmic and extracellular recombinant CGTase, respectively, compared to the wild-type SP at a similar level of cell lysis. The formation of intracellular inclusion bodies was also reduced, as determined by sodium dodecyl sulfate-polyacrylamyde gel electrophoresis, when this mutated SP was used. The addition of as low as 0.08% glycine at the beginning of cell growth improved cell viability of the E. coli host. Secretory production of other proteins, such as mannosidase, also showed similar improvement, as demonstrated by CGTase production, suggesting that the combination of an optimized SP and a suitable chemical additive leads to significant improvements of extracellular recombinant protein production and cell viability. These findings will be valuable for the extracellular production of recombinant proteins in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号