首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   26篇
  333篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   11篇
  2019年   14篇
  2018年   15篇
  2017年   12篇
  2016年   20篇
  2015年   24篇
  2014年   22篇
  2013年   29篇
  2012年   25篇
  2011年   30篇
  2010年   14篇
  2009年   9篇
  2008年   13篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1974年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
141.
We identified and functionally characterized genes encoding three Gα proteins and one Gβ protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Gαi and Gαs families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.Signal transduction pathways are important for sensing and responding to different environmental stimuli in both lower and higher eukaryotes. The highly conserved heterotrimeric guanine nucleotide-binding proteins (G proteins) belong to a family of regulatory proteins that are crucial for the transduction of signals, which are perceived by a distinct family of cell surface receptors (4). Heterotrimeric G proteins contain three subunits (α, β, and γ) that are linked in the inactive state. Activation of a Gα subunit by a transmembrane receptor leads to exchange of bound GDP with GTP on the Gα subunit, resulting in dissociation of the Gα and the Gβγ dimeric subunits, which can now interact with downstream effectors that subsequently generate changes in cellular responses (for a review, see reference 10).Filamentous fungi have one Gβ- and usually three Gα-encoding genes that belong to three major groups. Encoded proteins in groups I and III are related to the mammalian Gαi and Gαs families, respectively, but group II fungal Gα proteins have no mammalian counterpart (1, 4, 14, 22, 33, 53). Interestingly, the corn smut fungus Ustilago maydis contains a unique fourth Gα-encoding gene, and Saccharomyces cerevisiae contains only two Gα proteins (10, 57). Irrespective of the observed numerical variation, Gα proteins regulate a variety of cellular and developmental responses (4). For plant-pathogenic fungi, Gβ-encoding genes have been characterized functionally (9, 14, 22, 27, 31, 48, 52). Apart from the fact that individual Gα-encoding genes and the Gβ-encoding gene have been demonstrated to regulate growth, reproduction, and virulence, comparative functional characterization of all Gα-encoding genes has been reported only for a few plant-pathogenic fungi, including Magnaporthe grisea, Cryphonectria parasitica, and U. maydis (5, 41, 57).Mycosphaerella graminicola (anamorph Septoria tritici) causes septoria tritici blotch disease in bread and durum wheat in areas with high rainfall during the growing season, particularly in Western Europe, where it is considered to be the most important wheat disease (30). It is a ubiquitous phytopathogen with a lifestyle completely different from that of the aforementioned plant-pathogenic fungi. It is a dimorphic pathogen, and therefore the transition from a yeast-like to a filamentous form is important for initiation of infection (45). M. graminicola does not form appressoria but penetrates the leaves through stomata without forming specific infection structures. Furthermore, as a hemibiotroph, it has a biotrophic phase of about 10 days that is followed by a rapid switch to necrotrophy. The necrotic foliar lesions bear anamorphic and teleomorphic fructifications. M. graminicola is the model fungus for the Mycosphaerellaceae and even for the order Dothideales, an extremely large and diverse class of fungi with over 1,000 named species, including major plant pathogens such as the banana leaf streak fungus Mycosphaerella fijiensis (12, 21). Large expressed sequence tag (EST) libraries and the recently released genome sequence have been instrumental for the identification and characterization of genes involved in the development and pathogenicity of M. graminicola (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html). Recently, we reported that genes encoding mitogen-activated protein kinases (MAPKs) (MgFus3, MgSlt2, and MgHog1) and the catalytic (MgTpk2) and regulatory (MgBcy1) subunits of protein kinase A (PKA) are essential pathogenicity factors and regulate specific steps during the infection process (8, 43-45). To extend our knowledge about the role of G proteins in the development and pathogenicity of M. graminicola, we functionally analyzed three Gα-encoding genes and one Gβ-encoding gene of M. graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Our results show the requirement of MgGpa1, MgGpa3, and MgGpb1 for pathogenicity, whereas the latter also negatively regulates cell fusion and anastomosis. Among the G protein-encoding genes characterized in this study, MgGpa3 and MgGpb1 positively regulate the cyclic AMP (cAMP) pathway. MgGpa1 seems to be dispensable for cAMP regulation, whereas MgGpa2 appears to be redundant, for none of the assays rendered altered phenotypes. Our results open new perspectives for studying the regulatory machinery of the cAMP pathway in M. graminicola and other plant-pathogenic fungi.  相似文献   
142.
In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates (0.05 h(-1) to 0.40 h(-1)) using a 2 L stirred tank fermenter with a working volume of 600 ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, mu-max, was estimated at 0.40 h(-1), and the Monod cell growth saturation constant, Ks, at approximately 0.25 g/L. Maximum cell viability (1.3 x 10(10) CFU/ml) was achieved in the dilution rate range of D = 0.28 h(-1) to 0.35 h(-1). Both maximum viable cell yield and productivity were achieved at D = 0.35 h(-1). The continuous cultivation of L. rhamnosus at D = 0.35 h(-1) resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.  相似文献   
143.
Salinity is a major abiotic stress that greatly affects plant growth and crop production. Sodium ions in saline soil are toxic to plants because of their adverse effects on potassium nutrition, cytosolic enzyme activities, photosynthesis, and metabolism. It is important to identify genes involved in salinity tolerance from mangrove plants that survive under saline conditions. In this study, a total of 864 randomly selected cDNA clones were isolated and sequenced from the primary cDNA library of Acanthus ebracteatus. Among the 521 readable sequences, 138 of them were assembled into 43 contigs, whereas 383 were singletons. Sequence analyses demonstrated that 349 of these expressed sequence tags showed significant homology to functional proteins, of which 18% are particularly interesting as they correspond to genes involved in stress response. Some of these clones, including putative mannitol dehydrogenase, plastidic aldolase, secretory peroxidase, ascorbate peroxidase, and vacuolar H+-ATPase, may be related to osmotic homeostasis, ionic homeostasis, and detoxification.  相似文献   
144.
During inflammation, circulating polymorphonuclear neutrophils (PMNs) receive signals to cross the endothelial barrier and migrate through the extracellular matrix (ECM) to reach the injured site. Migration requires complex and poorly understood interactions of chemokines, chemokine receptors, ECM molecules, integrins, and other receptors. Here we show that the ECM protein lumican regulates PMN migration through interactions with specific integrin receptors. Lumican-deficient (Lum−/−) mice manifest connective tissue defects, impaired innate immune response, and poor wound healing with reduced PMN infiltration. Lum−/− PMNs exhibit poor chemotactic migration that is restored with exogenous recombinant lumican and inhibited by anti-lumican antibody, confirming a role for lumican in PMN migration. Treatment of PMNs with antibodies that block β2, β1, and αM integrin subunits inhibits lumican-mediated migration. Furthermore, immunohistochemical and biochemical approaches indicate binding of lumican to β2, αM, and αL integrin subunits. Thus, lumican may regulate PMN migration mediated by MAC-1 (αM2) and LFA-1 (αL2), the two major PMN surface integrins. We detected lumican on the surface of peritoneal PMNs and not bone marrow or peripheral blood PMNs. This suggests that PMNs must acquire lumican during or after crossing the endothelial barrier as they exit circulation. We also found that peritoneal PMNs do not express lumican, whereas endothelial cells do. Taken together these observations suggest a novel endothelial lumican-mediated paracrine regulation of neutrophils early on in their migration path.Polymorphonuclear neutrophils (PMNs)3 play a major role in the development of inflammatory responses to host injury and infection. Their functions include destruction of invading bacteria and recruitment of macrophages and lymphocytes to the affected site (1). Circulating PMNs sense injury and pathogen signals, cross the vascular endothelium, and migrate to the target tissue; two series of events control this process. The first leads to the slowing down and adherence of circulating PMNs on the vascular endothelium followed by their transendothelial migration or extravasation and activation (2). The second controls the directional migration of PMNs to the injured site through the endothelial basement membrane, a specialized type of ECM, and subsequently the deeper interstitial ECM, along chemokine and cytokine gradients. Leukocyte-to-leukocyte and leukocyte-to-endothelium interactions are important before extravasation. These are mediated by interactions between selectins and their ligands and by β2 (MAC-1 and LFA-1) and β1 (VLA-4–6) integrin interactions with cell adhesion proteins ICAM and PECAM (3). The directional migration of PMNs through the ECM is a complex, multistep process that involves several α and β integrin interactions with ECM proteins. Thus far, a few basement membrane proteins, laminins, entactin, and fibronectin have been identified as specific ligands in regulating migration of PMNs after extravasation (46). Additional interstitial ECM proteins and their receptors that modulate PMN migration have yet to be identified. Here we show that the ECM protein lumican is a novel regulator of PMN migration.Lumican is a secreted collagen-binding ECM protein of the corneal, dermal, and tendon stroma, arterial wall, and the intestinal submucosa (79). It is a member of the small leucine-rich repeat proteoglycans (10); these were initially investigated in the context of binding collagen and regulating tissue structure and biomechanics (11, 12). A body of literature is beginning to indicate that these proteoglycans interact with cytokines, growth factors, and cell surface receptors to modulate cell adhesion, proliferation, and migration (1316). Lumican and biglycan, another member of this family of proteoglycans, have been recently shown to regulate host response to pathogen-associated molecular patterns (17, 18). Thus, lumican-deficient (Lum−/−) mice are hyporesponsive to bacterial lipopolysaccharide (LPS) endotoxins, and Lum−/− macrophages in culture produce lower levels of pro-inflammatory cytokines in response to LPS (18). Lumican facilitates innate immune response by binding LPS and CD14, the glycerol phosphatidylinositol-linked cell surface adaptor protein that transfers the LPS signal to toll-like receptor 4 (18). In a corneal injury model neutrophil influx is delayed in the Lum−/− mice (19, 20). Although this may be partly due to impaired innate immune response, it raises the possibility that lumican may have an additional role in neutrophil migration. Here we elucidate a role for lumican in PMN migration. We show that poor chemotactic migration of Lum−/− PMNs can be rescued by exogenous recombinant lumican (rLum) and blocked specifically with antibodies against lumican, β2, β1, and αM integrins. Our results also show that lumican localizes on the surface of extravasated PMNs through its interactions with β2 integrins. The likely source of lumican on neutrophils is the vascular endothelium.  相似文献   
145.

Background:

The aim of this study was to evaluate the possible protective effect of sodium selenite on serum, liver, and kidney antioxidant enzymes activities in alloxan-induced type 1 diabetic rats.

Methods:

Forty Sprague-Dawley male rats were randomly divided into four groups; Group one as control, Group two as sham-treated with sodium selenite by 1 mg/kg intraperitoneal (i.p.) injections daily, Group three as diabetic untreated, and Group four as diabetic treated with sodium selenite by 1 mg/kg i.p. injections daily .Diabetes was induced in the third and fourth groups by subcutaneous alloxan injections. After eight weeks the animals were euthanized and livers and kidneys were immediately removed and used fresh or kept frozen until analysis. Before the rats were killed blood samples were also collected to measure glutathione peroxidase (GPX) and catalase (CAT) activities in sera.

Results:

Glutathione peroxidase and CAT activities serum, liver, and kidney were all significantly less in the diabetic rats than in the controls. Sodium selenite treatment of the diabetic rats resulted in significant increases in GPX activity in the kidneys and livers, and CAT activity in the sera and livers.

Conclusions:

Our results indicate that sodium selenite might be a potent antioxidant that exerts beneficial effects on both GPX and CAT activities in alloxan-induced type 1 diabetic rats. Key Words: Diabetes, Rat, Sodium selenite, Antioxidant enzymes activity  相似文献   
146.
Thiobacillus, as useful soil bacteria, plays an important role in sulfur cycling. The purpose of this study was to identify the species Thiobacillus thioparus, Thiobacillus novellas and Thiobacillus denitrificans in rainfed and irrigated lands soil in Ajabshir, Ilam, Qorveh, Rojintaak, Sonqor, Kermanshah and Research Farm of Razi University in Iran. Sampling was performed as randomized completely with three replications at depth of 0–30 cm. The Thiobacillus species were determined via 16S rRNA characteristics. The results of agarose gel electrophoresis indicated that T. thioparus was the highest amount in the irrigated land in Research Farm and its lowest amount was in the Rojintaak rainfed land. These species not found in four locations and conditions including the Ajabshir irrigated, Qorveh rainfed, Research Farm rainfed and Rojintaak irrigated lands. The results of the T. novellas indicated that this was found in Ilam irrigated, Qorveh rainfed, Research Farm irrigated, Rojintaak irrigated and Rojintaak rainfed lands. The highest and lowest amount of T. novellas was indicated in the Rojintaak and Ilam irrigated lands respectively. The T. denitrificans gene showed that this bacterium was observed only in both samples of Ajabshir. Our study showed that Thiobacillus was not detected in all of the soils. If sulfur fertilizer is given to the soil without this bacterium, it is necessary to use sulfur fertilizer with Thiobacillus bacteria inoculation for better sulfur oxidation.  相似文献   
147.
Flavin reductase plays an important biological role in catalyzing the reduction of flavin by NAD(P)H oxidation. The gene that codes for flavin reductase from Citrobacter freundii A1 was cloned and expressed in Escherichia coli BL21(DE3)pLysS. In this study, we aimed to characterize the purified recombinant flavin reductase of C. freundii A1. The recombinant enzyme was purified to homogeneity and the biochemical profiles, including the effect of pH, temperature, metal ions and anions on flavin reductase activity and stability, were determined. This enzyme exhibited optimum activity at 45 °C in a 10-min reaction at pH 7.5 and was stable at temperatures up to 30 °C. At 0.1 mM concentration of metal ions, flavin reductase activity was stimulated by divalent cations including Mn2+, Sr2+, Ni2+, Sn2+, Ba2+, Co2+, Mg2+, Ca2+ and Pb2+. Ag+ was noticeably the strongest inhibitor of recombinant flavin reductase of C. freundii A1. This enzyme should not be defined as a standard flavoprotein. This is the first attempt to characterize flavin reductase of C. freundii origin.  相似文献   
148.
149.
150.
Human Amniotic Membrane (AM) transplantation can promote tissue healing and reduce inflammation, tissue scarring and neovascularization. Homa Peyvand Tamin (HPT) tissue bank has focused on manufacturing human cell and tissue based products including AM. The purpose of this study is to evaluate and identify bacterial contamination of AMs that is produced by HPT for several ophthalmic applications. From July 2006 to April 2011, 122 placentas from cesarean sections were retrieved by HPT after obtaining informed consent from the donors. Besides testing donor’s blood sample for viral markers, microbiological evaluation was performed pre and post processing. During tissue processing, decontamination was performed by an antibiotic cocktail including; Gentamicin, Ceftriaxone and Cloxacillin. Of 271 cesarean section AM donors who were screened as potential donors, 122 were accepted for processing and assessed for microbiological contamination. Donors’ age were between 21 and 41 years (Mean = 27.61 ± 0.24). More than 92 % of mothers were in their first or second gravidity with full term pregnancies. The most prevalent organisms were Staphylococci species (72.53 %). After processing, contamination rates markedly decreased by 84.62 % (p value = 0.013). According to our results, most of bacterial contaminations were related to donation process and the contamination pattern suggests procurement team as a source. Therefore we recommend that regular training programs should be implemented by tissue banks for procurement staff. These programs should focus on improved donor screening and proper aseptic technique for tissue retrieval. We also suggest that tissue banks should periodically check the rate and types of tissue contaminations. These data help them to find system faults and to update processing methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号