首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   16篇
  254篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   12篇
  2013年   21篇
  2012年   20篇
  2011年   13篇
  2010年   14篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   6篇
  2003年   6篇
  2002年   10篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有254条查询结果,搜索用时 0 毫秒
71.
Gamma‐aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full‐length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA‐production, the GAD gene was cloned into pMG36e‐LbGAD, and then expressed in Lactobacillus plantarum Taj‐Apis362 cells. The overexpression was confirmed by SDS‐PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone‐back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA‐rich products.  相似文献   
72.
The 14-kDa Qcr7 protein represents one of the 10 subunits that are components of a functional cytochrome bc(1) complex in Sacharomyces cerevisiae. Previous studies have shown that the N-terminus of the Qcr7 protein may be involved in the assembly of the cytochrome bc(1) complex and its C-terminus by interacting with cytochrome b and QCR8 proteins. It has also been suggested that Qcr7 protein may be involved in proton pumping. The coding sequence for two highly conserved aspartate residues, D46 and D47, in the QCR7 gene was altered by site-directed mutagenesis and the mutated genes expressed in cells lacking a functional QCR7 gene. Mutants D46E, D46G, D46N, and D47E were comparable to wild type in growth phenotype on nonfermentable carbon sources. Mutants D47G and D47N were respiratory deficient and analysis of complex components by immunoblotting and spectral analysis of cytochrome b suggests defective assembly. Despite being respiratory competent and having normal electron transport rates in broken mitochondria, the mutant D46G had markedly reduced ATP synthesis from electron transport reactions catalyzed by complexes II plus III of the respiratory chain. This suggests that the geometry of proton uptake by the bc(1) complex is disturbed by the mutation in D46.  相似文献   
73.
Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in the northern region of Mexico, which is important because of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochemically screened for G6PD-deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% (n = 1993); the mutations in 86% of these samples were G6PD A?202A/376G , G6PD A?376G/968C and G6PD Santamaria376G/542T . Contrary to previous reports, we demonstrated that G6PD deficiency distribution is relatively homogenous throughout the country (P = 0.48336), and the unique exception with high frequency of G6PD deficiency does not involve a coastal population (Chihuahua: 2.4%). Analysis of eight polymorphic sites showed only 10 haplotypes. In one individual we identified a new G6PD mutation named Mexico DF193A>G (rs199474830), which probably results in a damaging functional effect, according to PolyPhen analysis. Proteomic impact of the mutation is also described.  相似文献   
74.
Obesity is associated with oxidative stress. Endurance training (ET) in healthy individuals increases antioxidant enzyme activity and decreases oxidative stress, whereas its effects on oxidative status in obese humans have yet to be determined. We investigated the effects of obesity and ET on markers of oxidative stress, antioxidant defense, and inflammation. Obese (n=12) and lean (n=12) women underwent 12 weeks of ET with blood, 24-h urine, and muscle biopsies collected prior to and following training for determination of oxidative stress (urinary 8-hydroxy-2-deoxyguanosine and 8-isoprostanes, muscle protein carbonyls, and 4-hydroxynonenal), antioxidant enzyme protein content (muscle CuZnSOD, MnSOD, and catalase), and inflammation (C-reactive protein, leptin, adiponectin, interleukin-6). Obese women had elevated urinary 8-hydroxy-2-deoxyguanosine (P=0.03), muscle protein carbonyls (P=0.03), and 4-hydroxynonenal (P<0.001); serum C-reactive protein (P=0.01); and plasma leptin (P=0.0001) and interleukin-6 (P=0.03). ET decreased urinary 8-hydroxy-2-deoxyguanosine (P=0.006) and 8-isoprostanes (P=0.02) in all subjects and CuZnSOD protein content (P=0.04) in obese women, in the absence of changes in body weight or composition. ET without weight loss decreases systemic oxidative stress, but not markers of inflammation, in obese women.  相似文献   
75.
76.
Sleep and Biological Rhythms - Sleep deprivation is common among university students, and has been associated with poor academic performance and physical dysfunction. However, current literature...  相似文献   
77.
Physiological responses to social isolation stress were compared in 56-day-old male Japanese quail. Birds were fed pretreated diets for 3 days as follows: (i) Basal diet (control); (ii) Basal diet + 1500 mg/kg metyrapone (BM); (iii) Basal diet + 30 mg/kg corticosterone (BCO); (iv) Basal diet + 250 mg/kg ascorbic acid (BC); (v) Basal diet + 250 mg/kg α-tocopherol (BE); (vi) Basal diet + 250 mg/kg ascorbic acid and 250 mg/kg α-tocopherol (BCE). The birds were subsequently socially isolated in individual opaque brown paper box for 2 hours. Plasma corticosterone (CORT) concentration and heart and brain heat shock protein 70 (Hsp 70) expressions were determined before stress and immediately after stress. Two hours of isolation stress elevated CORT concentration significantly in the control and BE birds but not in the BC, BCE and BM birds. There was a significant reduction in CORT concentration after isolation stress in the BCO group. Isolation stress increased Hsp 70 expression in the brain and heart of control and BM birds. However, brain and heart Hsp 70 expressions were not significantly altered in the isolated BC, BCE and BE birds. Although, the CORT concentration of BM birds was not affected by isolation stress, Hsp70 expression in both brain and heart were significantly increased. Moreover, exogenous corticosterone supplementation did not result in elevation of Hsp 70 expression. It can be concluded that, although Hsp 70 induction had not been directly affected by CORT concentration, it may be modulated by the HPA axis function via activation of ACTH.  相似文献   
78.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   
79.
80.
Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain’s endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25–1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号