首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   41篇
  国内免费   4篇
  2024年   1篇
  2023年   13篇
  2022年   20篇
  2021年   52篇
  2020年   25篇
  2019年   33篇
  2018年   34篇
  2017年   25篇
  2016年   33篇
  2015年   42篇
  2014年   59篇
  2013年   77篇
  2012年   90篇
  2011年   75篇
  2010年   47篇
  2009年   40篇
  2008年   50篇
  2007年   38篇
  2006年   31篇
  2005年   27篇
  2004年   23篇
  2003年   23篇
  2002年   12篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1974年   3篇
  1972年   2篇
排序方式: 共有903条查询结果,搜索用时 937 毫秒
101.
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.  相似文献   
102.
103.
In order to increase the effectiveness of Dictyostelium discoideum as a lead genetic model for drug discovery, a luminescence-based assay has been adapted and standardized for sensitive and rapid cell viability measurements. The applicability of the assay was demonstrated by measuring the cytotoxicity of several drugs in wild-type and mutant cells. The robustness and ease of the assay demonstrate that it can be used in high-throughput applications such as drug or mutant screens. Conclusions from these studies are applicable to evaluating cell viability assays in other systems as well.  相似文献   
104.
In mammalian cells DNA damage activates a checkpoint that halts progression through S phase. To determine the ability of nitrating agents to induce S-phase arrest, mouse C10 cells synchronized in S phase were treated with nitrogen dioxide (NO(2)) or SIN-1, a generator of reactive nitrogen species (RNS). SIN-1 or NO(2) induced S-phase arrest in a dose- and time-dependent manner. As for the positive controls adozelesin and cisplatin, arrest was accompanied by phosphorylation of ATM kinase; dephosphorylation of pRB; decreases in RF-C, cyclin D1, Cdc25A, and Cdc6; and increases in p21. Comet assays indicated that RNS induce minimal DNA damage. Moreover, in a cell-free replication system, nuclei from cells treated with RNS were able to support control levels of DNA synthesis when incubated in cytosolic extracts from untreated cells, whereas nuclei from cells treated with cisplatin were not. Induction of phosphatase activity may represent one mechanism of RNS-induced arrest, for the PP1/PP2A phosphatase inhibitor okadaic acid inhibited dephosphorylation of pRB; prevented decreases in the levels of RF-C, cyclin D1, Cdc6, and Cdc25A; and bypassed arrest by SIN-1 or NO(2), but not cisplatin or adozelesin. Our studies suggest that RNS may induce S-phase arrest through mechanisms that differ from those elicited by classical DNA-damaging agents.  相似文献   
105.
The CCAAT enhancer binding protein-β (C/EBPβ) is a critical regulator of many cellular processes. Exposure of C/EBPβ-deficient fibroblasts to tumor necrosis factor-α (TNF) resulted in their death due to apoptosis. While, the expression of Bad, Bcl-2, Bcl-x, CAS, and hILP/XIAP, as well as the nuclear translocation of NF-κB was normal in C/EBPβ-deficient cells, induction of manganous superoxide dismutase (MnSOD) gene did not occur. Ectopic expression of C/EBPβ in C/EBPβ–deficient fibroblasts prevented TNF-induced apoptosis. C/EBPβ complemented cells were able to induce MnSOD in response to TNF, ruling out the possibilities that C/EBPβ could render protection by regulating early apoptotic gene expression and/or NF-κB p65 expression. Moreover, C/EBPβ-deficient cells stably transfected with an MnSOD expression vector bypassed the requirement of C/EBPβ in protection against TNF-induced cell death, suggesting that C/EBPβ protects TNF-induced apoptotic cell death through its role in activating MnSOD expression. Mechanistically, C/EBPβ was required for induced NF-κB p65 binding to MnSOD’s intronic TNF response element and indispensable for histone acetylation of the element in response to TNF. These results suggest a role for C/EBPβ in MnSOD regulation through remodeling of local chromatin structure. This work was supported by a grant from the National Institutes of Health, CA96810.  相似文献   
106.
Microbial keratinases and their prospective applications: an overview   总被引:1,自引:0,他引:1  
Microbial keratinases have become biotechnologically important since they target the hydrolysis of highly rigid, strongly cross-linked structural polypeptide “keratin” recalcitrant to the commonly known proteolytic enzymes trypsin, pepsin and papain. These enzymes are largely produced in the presence of keratinous substrates in the form of hair, feather, wool, nail, horn etc. during their degradation. The complex mechanism of keratinolysis involves cooperative action of sulfitolytic and proteolytic systems. Keratinases are robust enzymes with a wide temperature and pH activity range and are largely serine or metallo proteases. Sequence homologies of keratinases indicate their relatedness to subtilisin family of serine proteases. They stand out among proteases since they attack the keratin residues and hence find application in developing cost-effective feather by-products for feed and fertilizers. Their application can also be extended to detergent and leather industries where they serve as specialty enzymes. Besides, they also find application in wool and silk cleaning; in the leather industry, better dehairing potential of these enzymes has led to the development of greener hair-saving dehairing technology and personal care products. Further, their prospective application in the challenging field of prion degradation would revolutionize the protease world in the near future.  相似文献   
107.
RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drug's mechanism of action. Hits identified by screening of a genome-scale siRNA library for cisplatin enhancers in TP53-deficient HeLa cells were significantly enriched for genes with annotated functions in DNA damage repair as well as poorly characterized genes likely having novel functions in this process. We followed up on a subset of the hits from the cisplatin enhancer screen and validated a number of enhancers whose products interact with BRCA1 and/or BRCA2. TP53(+/-) matched-pair cell lines were used to determine if knockdown of BRCA1, BRCA2, or validated hits that associate with BRCA1 and BRCA2 selectively enhances cisplatin cytotoxicity in TP53-deficient cells. Silencing of BRCA1, BRCA2, or BRCA1/2-associated genes enhanced cisplatin cytotoxicity approximately 4- to 7-fold more in TP53-deficient cells than in matched TP53 wild-type cells. Thus, tumor cells having disruptions in BRCA1/2 network genes and TP53 together are more sensitive to cisplatin than cells with either disruption alone.  相似文献   
108.
2-Phenyl-4-quinolone acetic acids and their esters were synthesized and evaluated for interaction with tubulin and for cytotoxicity against a panel of human tumor cell lines. 2-Phenyl- and 2-(2'-fluorophenyl)-4-quinolone-8-acetic acids (11 and 12) displayed potent cytotoxicity with ED(50) values at nanomolar concentrations, but had minimal activity against tubulin polymerization. 2-(2'-Fluorophenyl)-4-quinolone-6-acetic acid (3) and 2-(2'-fluorophenyl)-4-quinolone-8-acetic acid methyl ester (10) moderately inhibited tubulin polymerization.  相似文献   
109.
Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87?×?10(-12) for SNP rs634990 in Caucasians, and 9.65?×?10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20?×?10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95?% CI 1.64, 2.16, P?相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号