首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   59篇
  2022年   4篇
  2021年   17篇
  2020年   14篇
  2019年   11篇
  2018年   11篇
  2017年   11篇
  2016年   18篇
  2015年   27篇
  2014年   50篇
  2013年   55篇
  2012年   59篇
  2011年   63篇
  2010年   39篇
  2009年   29篇
  2008年   41篇
  2007年   33篇
  2006年   35篇
  2005年   26篇
  2004年   26篇
  2003年   20篇
  2002年   15篇
  2001年   21篇
  2000年   22篇
  1999年   17篇
  1998年   4篇
  1997年   9篇
  1996年   5篇
  1994年   8篇
  1992年   10篇
  1991年   10篇
  1990年   9篇
  1988年   8篇
  1986年   4篇
  1985年   5篇
  1983年   5篇
  1982年   7篇
  1981年   9篇
  1980年   6篇
  1979年   12篇
  1978年   8篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
  1971年   11篇
  1970年   4篇
  1968年   3篇
  1966年   7篇
  1964年   3篇
排序方式: 共有860条查询结果,搜索用时 312 毫秒
91.
At present, Salmonella is considered to express two peroxiredoxin-type peroxidases, TsaA and AhpC. Here we describe an additional peroxiredoxin, Tpx, in Salmonella enterica and show that a single tpx mutant is susceptible to exogenous hydrogen peroxide (H2O2), that it has a reduced capacity to degrade H2O2 compared to the ahpCF and tsaA mutants, and that its growth is affected in activated macrophages. These results suggest that Tpx contributes significantly to the sophisticated defense system that the pathogen has evolved to survive oxidative stress.Salmonella is an important human pathogen which causes a variety of diseases, including gastroenteritis, septicemia, and typhoid fever. In the host, salmonellae reside inside phagocytic cells and are exposed to various host defense mechanisms, including oxidative stress (13). The production of superoxide anion (O2) is crucial, as individuals with chronic granulomatous disease, which is due to a defective phagocyte NADPH oxidase, are more susceptible to infections with Salmonella (10). Likewise, diminished NADPH oxidase activity leads to increased susceptibility to Salmonella in murine macrophages (20-22, 25). Superoxide anion (O2) is weakly reactive and fails to pass through the bacterial cell wall. After conversion to H2O2 by either spontaneous or enzymatic dismutation by superoxide dismutases, it readily diffuses into the bacterial cell and forms reactive hydroxyl radicals (OH) that damage macromolecules such as DNA, proteins, and lipids (12, 17).In principle, Salmonella possesses two classes of enzymes to degrade H2O2. Catalases degrade H2O2 to water and molecular oxygen independent of an additional reductant. Peroxiredoxin-type peroxidases (peroxiredoxins) reduce organic hydroperoxides to alcohols and hydrogen peroxide to water at the expense of NADH or NADPH. In a recent study by Hébrard et al., three members of the catalase family, KatG, KatE, and KatN, and two members of the peroxiredoxin family, AhpC and TsaA, were characterized in Salmonella (14). Previously it had been shown that single katE, katG, and katN Salmonella mutants did not show increased susceptibility to exogenous H2O2 (3, 24). In macrophages a katG katE katN triple mutant had no growth defect, whereas an ahpCF tsaA double mutant showed a reduced growth rate in macrophages (14). These observations point out the multiple routes that have evolved in Salmonella to protect the pathogen against oxidative stress and suggest that peroxiredoxins play a dominant role in the antioxidant defense during infection. In this study we characterized a third peroxiredoxin-type peroxidase, Tpx. Surprisingly, a simple tpx mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) was more susceptible to exogenous H2O2 than the wild type (WT). The mutant grew less well in activated macrophages and showed a reduced peroxidase activity toward H2O2.  相似文献   
92.
Flume tanks are becoming increasingly important research tools in aquatic ecology, to link biological to hydrodynamical processes. There is no such thing as a “standard flume tank”, and no flume tank is suitable for every type of research question. A series of experiments has been carried out to characterise and compare the hydrodynamic characteristics of 12 different flume tanks that are designed specifically for biological research. These facilities are part of the EU network BioFlow. The flumes could be divided into four basic design types: straight, racetrack, annular and field flumes. In each facility, two vertical velocity profiles were measured: one at 0.05 m s−1 and one at 0.25 m s−1. In those flumes equipped with Acoustic Doppler Velocimeters (ADV), time series were also recorded for each velocity at two heights above the bottom: 0.05 m and 20% of the water depth. From these measurements turbulence characteristics, such as TKE and Reynolds stress, were derived, and autocorrelation spectra of the horizontal along-stream velocity component were plotted. The flume measurements were compared to two sets of velocity profiles measured in the field.Despite the fact that some flumes were relatively small, turbulence was fully developed in all channels. Straight and racetrack flumes generally produced boundary layers with a clearly definable logarithmic layer, similar to measurements in the field taken under steady flow conditions. The two annular flumes produced relatively thin boundary layers, presumably due to secondary flows developing in the curved channels. The profiles in the field flumes also differed considerably from the expected log profile. This may either have been due the construction of the flume, or due to unsteady conditions during measurement. Constraints imposed by the different flume designs on the suitability for different types of boundary layer research, as well as scaling issues are discussed.  相似文献   
93.
94.
Environmental DNA libraries are important sources for novel biocatalyst genes but activity screening for relevant enzymes is often inefficient. Therefore, we have constructed the transposon MuExpress which randomly integrates in vitro into existing bacterial artificial chromosome (BAC) or cosmid libraries and permits the inducible expression of its flanking regions in both directions. Furthermore, this transposon allows the bidirectional sequencing of the respective clones starting from unique primer binding sites.  相似文献   
95.
Antisense potentially can manipulate target gene expression in the brain if it can cross the blood-brain barrier (BBB). We designed three (10mer, 17mer, and 19mer) phosphorothioated antisenses (PS-ODNs) directed against the precursor molecule of methionine enkephalin (Met-Enk), an opiate peptide which suppresses voluntary ethanol drinking. We measured the ability of the antisenses to cross the BBB, accumulate in the brain and CSF, decrease levels of Met-Enk in brain and blood, and affect voluntary ethanol drinking. Each antisense readily crossed the BBB, with 0.07-0.16% of the i.v. dose accumulating per gram of brain. Capillary depletion and CSF sampling each confirmed that the antisenses entered the CNS. Gel electrophoresis of radioactivity recovered from brain and serum showed intact antisense and a higher molecular weight form likely representing antisense bound to protein, but no degradation products. Each antisense molecule and a cocktail of all three reduced Met-Enk levels in brain and serum. Met-Enk levels in the brain were reduced more rapidly and for a longer duration than Met-Enk levels in the serum, indicating a degree of selective targeting to the CNS. Additionally, administration of the cocktail was more effective in reducing Met-Enk levels than any of the individual antisenses. Each antisense increased voluntary ethanol drinking by about 20% and the cocktail increased it by about 80%. Taken together, these results used pharmacokinetic, immunochemical, and behavioral methods to show that PS-ODN antisenses that readily cross the BBB can decrease brain levels of Met-Enk and increase voluntary ethanol drinking.  相似文献   
96.
97.
In metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3′ end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem–loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem–loop binding protein (SLBP), which binds to the stem–loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE. Using RNA structure-probing techniques, we determined the secondary structure of the 3′-untranslated region (3′-UTR) of mouse histone pre-mRNAs H4–12, H1t and H2a–614. Surprisingly, the HDE is embedded in hairpin structures and is therefore not easily accessible for U7 snRNP anchoring. Probing of the 3′-UTR in complex with SLBP revealed structural rearrangements leading to an overall opening of the structure especially at the level of the HDE. Electrophoretic mobility shift assays demonstrated that the SLBP-induced opening of HDE actually facilitates U7 snRNA anchoring on the histone H4–12 pre-mRNAs 3′ end. These results suggest that initial binding of the SLBP functions in making the HDE more accessible for U7 snRNA anchoring.  相似文献   
98.

Background  

Normalization of gene expression microarrays carrying thousands of genes is based on assumptions that do not hold for diagnostic microarrays carrying only few genes. Thus, applying standard microarray normalization strategies to diagnostic microarrays causes new normalization problems.  相似文献   
99.
Rapidly advancing technology has resulted in the generation of the genomic sequences of several human tumors. We have identified several mutations of the DNA polymerase β (pol β) gene in human colorectal cancer. We have demonstrated that the expression of the pol β G231D variant increased chromosomal aberrations and induced cellular transformation. The transformed phenotype persisted in the cells even once the expression of G231D was extinguished, suggesting that it resulted as a consequence of genomic instability. Biochemical analysis revealed that its catalytic rate was 140-fold slower than WT pol β, and this was a result of the decreased binding affinity of nucleotides by G231D. Residue 231 of pol β lies in close proximity to the template strand of the DNA. Molecular modeling demonstrated that the change from a small and nonpolar glycine to a negatively charged aspartate resulted in a repulsion between the template and residue 231 leading to the distortion of the dNTP binding pocket. In addition, expression of G231D was insufficient to rescue pol β-deficient cells treated with chemotherapeutic agents suggesting that these agents may be effectively used to treat tumors harboring this mutation. More importantly, this suggests that the G231D variant has impaired base excision repair. Together, these data indicate that the G231D variant plays a role in driving cancer.  相似文献   
100.
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号