全文获取类型
收费全文 | 381篇 |
免费 | 55篇 |
专业分类
436篇 |
出版年
2023年 | 1篇 |
2022年 | 8篇 |
2021年 | 14篇 |
2020年 | 6篇 |
2019年 | 4篇 |
2018年 | 9篇 |
2017年 | 7篇 |
2016年 | 19篇 |
2015年 | 21篇 |
2014年 | 32篇 |
2013年 | 32篇 |
2012年 | 29篇 |
2011年 | 34篇 |
2010年 | 18篇 |
2009年 | 15篇 |
2008年 | 24篇 |
2007年 | 19篇 |
2006年 | 13篇 |
2005年 | 16篇 |
2004年 | 17篇 |
2003年 | 20篇 |
2002年 | 16篇 |
2001年 | 11篇 |
2000年 | 9篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1989年 | 5篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有436条查询结果,搜索用时 15 毫秒
61.
Ragunath C Manuel SG Venkataraman V Sait HB Kasinathan C Ramasubbu N 《Journal of molecular biology》2008,384(5):1232-1248
Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: (1) hydrolysis of starch, (2) binding to hydroxyapatite (HA), and (3) binding to bacteria (e.g., viridans streptococci). Although the active site of HSAmy for starch hydrolysis is well-characterized, the regions responsible for bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one or more of the secondary saccharide-binding sites harboring the aromatic residues may play an important role in bacterial binding. To test this hypothesis, the aromatic residues at five secondary binding sites were mutated to alanine to generate six mutants representing either single (W203A, Y276A, and W284A), double (Y276A/W284A and W316A/W388A), or multiple [W134A/W203A/Y276A/W284A/W316A/W388A; human salivary α-amylase aromatic residue multiple mutant (HSAmy-ar)] mutations. The crystal structure of HSAmy-ar as an acarbose complex was determined at a resolution of 1.5 Å and compared with the existing wild-type acarbose complex. The wild-type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch-binding activity, HA-binding activity, and bacterial binding activity. Our results clearly showed that (1) mutation of aromatic residues does not alter the overall conformation of the molecule; (2) single or double mutants showed either moderate or minimal changes in both starch-binding activity and bacterial binding activity, whereas HSAmy-ar showed significant reduction in these activities; (3) starch-hydrolytic activity was reduced by 10-fold in HSAmy-ar; (4) oligosaccharide-hydrolytic activity was reduced in all mutants, but the action pattern was similar to that of the wild-type enzyme; and (5) HA binding was unaffected in HSAmy-ar. These results clearly show that the aromatic residues at the secondary saccharide-binding sites in HSAmy play a critical role in bacterial binding and in starch-hydrolytic functions of HSAmy. 相似文献
62.
The measurement of oxalate in urine was improved by employing barley oxalate oxidase immobilized on alkylamine glass beads affixed in a glass beaker. The minimum detection limit was 3.6 mg l(-1) urine. The recovery of added oxalate was 88.9+/-9.2%. Within- and between-assay coefficients of variation (CV) were <4.0 and <9.4%, respectively. The urinary oxalate values were obtained by a commercial kit method and the present method showed a good correlation (0.999). The method is free from tedious handling of glass beads and Cl- interference. 相似文献
63.
Mahendran Ganesan Kumar Deepak Verma Sanjeet Kumar Chandran Ashish Warsi ·Zafar Iqbal Husain Zakir Afroz Shama Rout Prasant Kumar Rahman Laiq Ur 《Plant Cell, Tissue and Organ Culture》2021,146(2):423-423
Plant Cell, Tissue and Organ Culture (PCTOC) - 相似文献
64.
Neelam Sharma-Walia Arun George Paul Virginie Bottero Sathish Sadagopan Mohanan Valiya Veettil Nagaraj Kerur Bala Chandran 《PLoS pathogens》2010,6(2)
Kaposi''s sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS. 相似文献
65.
A P Chandran R K Marya L K Sharma 《Canadian journal of physiology and pharmacology》1989,67(10):1240-1242
The presence of two types of fast myoelectrical activities, medium fast activity and fast activity, has been demonstrated previously in the electromyogram of colon in normal children and in the rat by the authors. An absence of medium fast activity in Hirschsprung's disease and in experimental aganglionosis of colon in the rat has also been described. In the present study the fast components of colonic myoelectrical activity were analysed during the procedures affecting ganglionic transmission. It was observed that ganglionic stimulants, such as balloon inflation, and intra-arterial injections of acetylcholine and small amounts of nicotine, increased the spike activity and the frequency of medium fast activity without affecting fast activity. The intra-arterial injections of ganglionic blocking agents, such as nicotine in large amounts and pentolinium tartrate, completely abolished the medium fast activity. These observations suggest that the ganglionic activity is responsible for the genesis of medium fast activity and that the absence of cholinergic ganglionic transmission is the most important single factor for the reported altered electromyogram pattern in aganglionosis. 相似文献
66.
In this paper, laser-Doppler anemometry measurement of steady flow development in a model human aorta has been reported. Studies were made with uniform entry flow at the root of the aorta and our measurements showed the establishment of a pair of Dean vortices in the mid-arch region. Subsequently, the nature of flow development past centrally occluding caged ball valves in the model aorta was investigated. Our studies showed that in the ascending aorta, an asymmetric velocity profile is obtained with larger velocity gradients towards the inner wall of tertiary curvature (anatomically the left lateral wall) with centrally occluding valves. The peripheral flow past these valves prevented the development of Dean vortices in the mid-arch region. The caged ball valves at the root of the aorta had no discernible effect on the velocity profiles in the brachio-cephalic artery. 相似文献
67.
68.
Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water. 相似文献
69.
Acharya P Pallavi R Chandran S Dandavate V Sayeed SK Rochani A Acharya J Middha S Kochar S Kochar D Ghosh SK Tatu U 《PloS one》2011,6(10):e26623
Recent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored. While the proteome of P. falciparum, the causative agent of cerebral malaria, has been extensively explored from several sources, there is limited information on the proteome of P. vivax. We have, for the first time, examined the proteome of P. vivax isolated directly from patients without adaptation to laboratory conditions. We have identified 153 proteins from clinical P. vivax, majority of which do not show homology to any previously known gene products. We also report 29 new proteins that were found to be expressed in P. vivax for the first time. In addition, several proteins previously implicated as anti-malarial targets, were also found in our analysis. Most importantly, we found several unique proteins expressed by P. vivax.This study is an important step in providing insight into physiology of the parasite under clinical settings. 相似文献
70.
Veettil MV Sadagopan S Sharma-Walia N Wang FZ Raghu H Varga L Chandran B 《Journal of virology》2008,82(24):12126-12144
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface heparan sulfate (HS) and α3β1 integrin during the early stages of infection of human dermal microvascular endothelial cells (HMVEC-d) and human foreskin fibroblasts (HFF), and these interactions are followed by virus entry overlapping with the induction of preexisting host cell signal pathways. KSHV also utilizes the amino acid transporter protein xCT for infection of adherent cells, and the xCT molecule is part of the cell surface heterodimeric membrane glycoprotein CD98 (4F2 antigen) complex known to interact with α3β1 and αVβ3 integrins. KSHV gB mediates adhesion of HMVEC-d, CV-1, and HT-1080 cells and HFF via its RGD sequence. Anti-αV and -β1 integrin antibodies inhibited the cell adhesion mediated by KSHV-gB. Variable levels of neutralization of HMVEC-d and HFF infection were observed with antibodies against αVβ3 and αVβ5 integrins. Similarly, variable levels of inhibition of virus entry into adherent HMVEC-d, 293 and Vero cells, and HFF was observed by preincubating virus with soluble α3β1, αVβ3, and αVβ5 integrins, and cumulative inhibition was observed with a combination of integrins. We were unable to infect HT1080 cells. Virus binding and DNA internalization studies suggest that αVβ3 and αVβ5 integrins also play roles in KSHV entry. We observed time-dependent temporal KSHV interactions with HMVEC-d integrins and CD98/xCT with three different patterns of association and dissociation. Integrin αVβ5 interaction with CD98/xCT predominantly occurred by 1 min postinfection (p.i.) and dissociated at 10 min p.i., whereas α3β1-CD98/xCT interaction was maximal at 10 min p.i. and dissociated at 30 min p.i., and αVβ3-CD98/xCT interaction was maximal at 10 min p.i. and remained at the observed 30 min p.i. Fluorescence microscopy also showed a similar time-dependent interaction of αVβ5-CD98. Confocal-microscopy studies confirmed the association of CD98/xCT with α3β1 and KSHV. Preincubation of KSHV with soluble heparin and α3β1 significantly inhibited this association, suggesting that the first contact with HS and integrin is an essential element in subsequent CD98-xCT interactions. Anti-CD98 and xCT antibodies did not block virus binding and entry and nuclear delivery of viral DNA; however, viral-gene expression was significantly inhibited, suggesting that CD98-xCT play roles in the post-entry stage of infection, possibly in mediating signal cascades essential for viral-gene expression. Together, these studies suggest that KSHV interacts with functionally related integrins (αVβ3, α3β1, and αVβ5) and CD98/xCT molecules in a temporal fashion to form a multimolecular complex during the early stages of endothelial cell infection, probably mediating multiple roles in entry, signal transduction, and viral-gene expression. 相似文献