首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1028篇
  免费   60篇
  2023年   2篇
  2022年   11篇
  2021年   14篇
  2020年   9篇
  2019年   13篇
  2018年   17篇
  2017年   6篇
  2016年   26篇
  2015年   42篇
  2014年   54篇
  2013年   84篇
  2012年   82篇
  2011年   74篇
  2010年   52篇
  2009年   45篇
  2008年   66篇
  2007年   66篇
  2006年   68篇
  2005年   57篇
  2004年   77篇
  2003年   54篇
  2002年   47篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   11篇
  1997年   2篇
  1996年   9篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   3篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   6篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1964年   1篇
排序方式: 共有1088条查询结果,搜索用时 468 毫秒
51.
Cigarette smoke is a mixture of chemicals having direct and/or indirect toxic effects on different lung cells. We investigated the effect of cigarette smoke on human lung fibroblasts (HFL-1) oxidation and apoptosis. Cells were exposed to various concentrations (1, 5, and 10%) of cigarette smoke extract (CSE) for 3 h, and oxidative stress and apoptosis were assessed by fluorescence-activated cell sorting and confocal laser fluorescence microscopy. Both oxidative stress and apoptosis exhibited a dose-response relationship with CSE concentrations. Lung fibroblasts also showed marked DNA fragmentation at the Comet assay after exposure to 10% CSE. Coincubation of HLF-1 cells with N-acetylcysteine (1 mM) during CSE exposure significantly reduced oxidative stress, apoptosis, and DNA fragmentation, whereas preincubation (3 h) with the glutathione-depleting agent buthionine sulfoximine (125 microM) produced a significant increase of oxidative stress. Cigarette smoke is a potent source of oxidative stress, DNA damage, and apoptosis for HFL-1 cells, and we speculate that this could contribute to the development of pulmonary emphysema in the lungs of smokers.  相似文献   
52.
53.
We have studied changes in hepatic mitochondrial efficiency induced by 24-h fasting or acclimation at 29 degrees C, two conditions of reduced thermogenesis. Basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, are not affected after 24-h fasting, when serum free triiodothyronine decreases significantly and serum free fatty acids increase significantly. In rats at 29 degrees C, in which serum free triiodothyronine and fatty acids decrease significantly, basal proton leak increases significantly, while no variation is found in palmitate-induced proton leak. The present results indicate that mitochondrial efficiency in the liver is not related to a physiological decrease in whole body thermogenesis.  相似文献   
54.
Several reactions in biological systems contribute to maintain the steady-state concentrations of superoxide anion (O(2)*-) and hydrogen peroxide (H(2)O(2)). The electron transfer chain of mitochondria is a well documented source of H(2)O(2); however, the release of O(2)*- from mitochondria into cytosol has not been unequivocally established. This study was aimed at validating mitochondria as sources of cytosolic O(2)*-, elucidating the mechanisms underlying the release of O(2)*- from mitochondria into cytosol, and assessing the role of outer membrane voltage-dependent anion channels (VDACs) in this process. Isolated rat heart mitochondria supplemented with complex I or II substrates generate an EPR signal ascribed to O(2)*-. Inhibition of the signal in a concentration-dependent manner by both manganese-superoxide dismutase and cytochrome c proteins that cannot cross the mitochondrial membrane supports the extramitochondrial location of the spin adduct. Basal rates of O(2)*- release from mitochondria were estimated at approximately 0.04 nmol/min/mg protein, a value increased approximately 8-fold by the complex III inhibitor, antimycin A. These estimates, obtained by quantitative spin-trapping EPR, were confirmed by fluorescence techniques, mainly hydroethidine oxidation and horseradish peroxidase-based p-hydroxyphylacetate dimerization. Inhibitors of VDAC, 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS), and dextran sulfate (in a voltage-dependent manner) inhibited O(2)*- production from mitochondria by approximately 55%, thus suggesting that a large portion of O(2)*- exited mitochondria via these channels. These findings are discussed in terms of competitive decay pathways for O(2)*- in the intermembrane space and cytosol as well as the implications of these processes for modulating cell signaling pathways in these compartments.  相似文献   
55.
The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.  相似文献   
56.
57.
Due to its minor groove selectivity, Me-lex preferentially generates N3-methyladenine (3-MeA) adducts in double-stranded DNA. We undertook a genetic approach in yeast to establish the influence of base excision repair (BER) defects on the processing of Me-lex lesions on plasmid DNA that harbors the p53 cDNA as target. We constructed a panel of isogenic strains containing a reporter gene to test p53 function and the following gene deletions: deltamag1, deltaapn1apn2, and deltaapn1apn2mag1. When compared with the wild-type strain, a decrease in survival was observed in deltamag1, deltaapn1apn2, and deltaapn1apn2mag1. The Me-lex-induced mutation frequency increased in the following order: wild type < deltamag1< deltaapn1apn2 = deltaapn1apn2mag1. A total of 77 mutants (23 in wild type, 31 in deltamag1, and 23 in deltaapn1apn2) were sequenced. Eighty-one independent mutations (24 in wild type, 34 in deltamag1, and 23 in deltaapn1apn2) were detected. The majority of base pair substitutions were AT-targeted in all strains (14/23, 61% in wild type; 20/34, 59%, in deltamag1; and 14/23, 61%, in deltaapn1apn2). The Mag1 deletion was associated with a significant decrease of GC > AT transitions when compared with both the wild-type and the AP endonuclease mutants. This is the first time that the impact of Mag1 and/or AP endonuclease defects on the mutational spectra caused by 3-MeA has been determined. The results suggest that 3-MeA is critical for Me-lex cytotoxicity and that its mutagenicity is slightly elevated in the absence of Mag1 glycosylase activity but significantly higher in the absence of AP endonuclease activity.  相似文献   
58.
Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 micro m) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 micro m) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nm and was too low to efficiently interact with alpha7 nicotinic acetylcholine receptors or with the glycineb site of N-methyl-d-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 micro m) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.  相似文献   
59.
Ischemic preconditioning increases the velocity of vasodilatation and reduces the total hyperemic flow (THF) of a subsequent coronary reactive hyperemia (CRH). The increase in the velocity of vasodilatation has been shown to depend on an up-regulation of the endothelial release of nitric oxide, while the reduction of THF is attributed to an adenosine A(1) receptor-mediated mechanism. We investigated whether the changes in CRH induced by preconditioning ischemia (PI) can still be obtained after blockade of mitochondrial ATP-sensitive K(+) channels by sodium 5-hydroxydecanoate (5-HD), and whether the blockade per se affects the pattern of CRH.In anesthetized goats, flow was recorded from the left circumflex coronary artery (LCCA). CRH was obtained with the occlusion of LCCA for 15 s. PI was obtained by 2 cycles of 2.5 min of LCCA occlusion with a 5 min interval of reperfusion between the two occlusions. CRH was studied before and after i.v. administration of 5-HD (20 mg/kg), as well as in the presence of 5-HD after PI. Following 5-HD, the pattern of CRH remained unchanged. After 5-HD and PI, velocity of vasodilatation and total hyperemic flow of CRH showed the same changes as in previous studies after PI alone. It was concluded that the blockade of mitochondrial ATP-sensitive K(+) channels, which is reported to prevent myocardial protection, does not affect CRH and does not prevent PI from increasing the velocity of vasodilatation and reducing THF. These results demonstrate that the changes induced in CRH by preconditioning are independent of the opening of the mitochondrial ATP-sensitive K(+) channels.  相似文献   
60.
We have previously reported that the Vdelta2(+)TCRgammadelta(+) T lymphocyte subset, expressing the NK receptor protein 1a (NKRP1a; CD161), is expanded in patients with relapsing-remitting multiple sclerosis and uses this molecule to migrate through endothelium. In this work, we show that Vdelta1(+) and Vdelta2(+) gammadelta T lymphocytes use distinct signal transduction pathways to accomplish this function. Indeed, we have found that Vdelta1(+) cells lack NKRP1a and selectively express the platelet endothelial cell adhesion molecule 1 (PECAM1; CD31), which drives transendothelial migration of this cell subset, at variance with Vdelta2(+) T cells, which are PECAM1 negative and use NKRP1a for transmigration. Interestingly, when Vdelta2(+) T cells were pretreated with two specific inhibitors of the calcium calmodulin-dependent kinase II KN62 and KN93, but not with the inactive compound KN92, the number of migrating cells and the rate of transmigration were significantly decreased. In turn, the phosphatidylinositol 3 kinase blockers wortmannin and LY294002 exerted a dose-dependent inhibition of Vdelta1(+) cell migration. Finally, NKRP1a and PECAM1 engagement led to activation of different signal transduction pathways: indeed, oligomerization of NKRP1a on Vdelta2(+) T cells activates calcium calmodulin-dependent kinase II, while occupancy of PECAM1 on Vdelta1(+) cells triggers the phosphatidylinositol 3 kinase-dependent Akt/protein kinase Balpha activation. These findings suggest that subsets of gammadelta T lymphocytes may migrate to the site of lesion in multiple sclerosis using two different signaling pathways to extravasate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号