首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   56篇
  1032篇
  2024年   1篇
  2023年   3篇
  2022年   14篇
  2021年   15篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   6篇
  2016年   28篇
  2015年   42篇
  2014年   57篇
  2013年   86篇
  2012年   85篇
  2011年   70篇
  2010年   50篇
  2009年   43篇
  2008年   65篇
  2007年   64篇
  2006年   65篇
  2005年   55篇
  2004年   77篇
  2003年   50篇
  2002年   44篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   8篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1964年   1篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
141.
Stabilization and maturation of synapses are important for development and function of the nervous system. Previous studies have implicated cholesterol-rich lipid microdomains in synapse stabilization, but the underlying mechanisms remain unclear. We found that cholesterol stabilizes clusters of synaptic acetylcholine receptors (AChRs) in denervated muscle in vivo and in nerve-muscle explants. In paralyzed muscles, cholesterol triggered maturation of nerve sprout-induced AChR clusters into pretzel shape. Cholesterol treatment also rescued a specific defect in AChR cluster stability in cultured src(-/-);fyn(-/-) myotubes. Postsynaptic proteins including AChRs, rapsyn, MuSK and Src-family kinases were strongly enriched in lipid microdomains prepared from wild-type myotubes. Microdomain disruption by cholesterol-sequestering methyl-beta-cyclodextrin disassembled AChR clusters and decreased AChR-rapsyn interaction and AChR phosphorylation. Amounts of microdomains and enrichment of postsynaptic proteins into microdomains were decreased in src(-/-);fyn(-/-) myotubes but rescued by cholesterol treatment. These data provide evidence that cholesterol-rich lipid microdomains and SFKs act in a dual mechanism in stabilizing the postsynapse: SFKs enhance microdomain-association of postsynaptic components, whereas microdomains provide the environment for SFKs to maintain interactions and phosphorylation of these components.  相似文献   
142.
Atmospheric formaldehyde (CH(2)O) was detected under continuous flow conditions by an on-line system comprising of a wet scrubber for a continuous transfer of the pollutant to an aqueous solution, a micro-reactor containing immobilized formaldehyde dehydrogenase (FDH) and a conductometric transducer. By this system atmospheric formaldehyde concentrations in the range 0.05-2 ppm were detected with a sensitivity of 20 microS/ppm. In this concentration range the immobilized enzyme oxidized all the sampled formaldehyde molecules to formic acid, avoiding cumbersome calibration procedures. The operational stability of the biosensor was at least 3 months, working continuously 10 h/day at room temperature.  相似文献   
143.
Myogenesis is an intricate process that coordinately engages multiple intracellular signaling cascades. The Rho family GTPase RhoA is known to promote myogenesis, however, the mechanisms controlling its regulation in myoblasts have yet to be fully elucidated. We show here that the SH2-containing protein tyrosine phosphatase, SHP-2, functions as an early modulator of myogenesis by regulating RhoA. When MyoD was expressed in fibroblasts lacking functional SHP-2, muscle-specific gene activity was impaired and abolition of SHP-2 expression by RNA interference inhibited muscle differentiation. By using SHP-2 substrate-trapping mutants, we identified p190-B RhoGAP as a SHP-2 substrate. When dephosphorylated, p190-B RhoGAP has been shown to stimulate the activation of RhoA. During myogenesis, p190-B RhoGAP was tyrosyl dephosphorylated concomitant with the stimulation of SHP-2's phosphatase activity. Moreover, overexpression of a catalytically inactive mutant of SHP-2 inhibited p190-B RhoGAP tyrosyl dephosphorylation, RhoA activity, and myogenesis. These observations strongly suggest that SHP-2 dephosphorylates p190-B RhoGAP, leading to the activation of RhoA. Collectively, these data provide a mechanistic basis for RhoA activation in myoblasts and demonstrate that myogenesis is critically regulated by the actions of SHP-2 on the p190-B Rho GAP/RhoA pathway.  相似文献   
144.
145.
A large amount of highly purified hydroxytyrosol (91-94% in weight) is obtained in short time by a simple biotransformation of Olea europaea leaf extract by a partially purified hyperthermophilic beta-glycosidase immobilized on chitosan support. The biotransformation conditions have been modulated for increasing the hydroxytyrosol yield, whilst chitosan and chitin matrices are used as adsorbent materials in liquid phase hydroxytyrosol extraction from the biotransformed mixtures. Natural and non-toxic hydroxytyrosol has been by this way produced from a vegetal source, and this compound appeared for the first time highly purified by natural and biocompatible safe biopolymers in comparison to previous results. Moreover, the GC analyses have displayed that the eluates from a two-step bioreactor have qualitative composition very similar to that of the extra-virgin olive oil polar fraction. The proposed bioreactor could also find application in the utilization of olive mill waste waters (OMWW), medium rich in large amounts of oleuropein, which can be converted in pharmacologically active compounds.  相似文献   
146.
The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed.  相似文献   
147.
148.
Several reactions in biological systems contribute to maintain the steady-state concentrations of superoxide anion (O(2)*-) and hydrogen peroxide (H(2)O(2)). The electron transfer chain of mitochondria is a well documented source of H(2)O(2); however, the release of O(2)*- from mitochondria into cytosol has not been unequivocally established. This study was aimed at validating mitochondria as sources of cytosolic O(2)*-, elucidating the mechanisms underlying the release of O(2)*- from mitochondria into cytosol, and assessing the role of outer membrane voltage-dependent anion channels (VDACs) in this process. Isolated rat heart mitochondria supplemented with complex I or II substrates generate an EPR signal ascribed to O(2)*-. Inhibition of the signal in a concentration-dependent manner by both manganese-superoxide dismutase and cytochrome c proteins that cannot cross the mitochondrial membrane supports the extramitochondrial location of the spin adduct. Basal rates of O(2)*- release from mitochondria were estimated at approximately 0.04 nmol/min/mg protein, a value increased approximately 8-fold by the complex III inhibitor, antimycin A. These estimates, obtained by quantitative spin-trapping EPR, were confirmed by fluorescence techniques, mainly hydroethidine oxidation and horseradish peroxidase-based p-hydroxyphylacetate dimerization. Inhibitors of VDAC, 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS), and dextran sulfate (in a voltage-dependent manner) inhibited O(2)*- production from mitochondria by approximately 55%, thus suggesting that a large portion of O(2)*- exited mitochondria via these channels. These findings are discussed in terms of competitive decay pathways for O(2)*- in the intermembrane space and cytosol as well as the implications of these processes for modulating cell signaling pathways in these compartments.  相似文献   
149.
Skeletonema marinoi produces 2,4-heptadienal, 2,4-octadienal, and 2,4,7-octatrienal, the latter only in traces. In nutrient-replete cultures, the production of potentially defensive polyunsaturated aldehydes (PUA) increases from the exponential to the stationary phase of growth from 1.2 fmol cell(-1) (+/-0.4 fmol cell(-1) SD) to 4.2 fmol cell(-1) (+/-1.0 fmol cell(-1) SD), with 2,4-heptadienal as the dominant aldehyde. The plasticity of PUA production with age of the culture supports the hypothesis of a direct link between toxin production and cell physiological state. N- and P-limited cells in stationary phase produced 1.4 and 1.8 fold higher amounts of PUA than control cultures and 10.7 and 4.6 times higher PUAs when compared to their own exponential growth phase, respectively. The increase in PUA production in the nutrient-limited cultures was not paralleled by an increase in the total amount of precursor fatty acids indicating that physiological stress might trigger an enhanced expression or activity of the enzymes responsible for PUA production, i.e. chemical defense increase in aged and nutrient-stressed diatoms. If this holds true during blooms, grazers feeding at the end of a bloom would be more affected than early-bloom grazers.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号