首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1054篇
  免费   85篇
  2022年   20篇
  2021年   26篇
  2020年   10篇
  2019年   13篇
  2018年   28篇
  2017年   22篇
  2016年   29篇
  2015年   39篇
  2014年   46篇
  2013年   82篇
  2012年   80篇
  2011年   73篇
  2010年   55篇
  2009年   45篇
  2008年   72篇
  2007年   56篇
  2006年   63篇
  2005年   47篇
  2004年   38篇
  2003年   58篇
  2002年   49篇
  2001年   11篇
  2000年   13篇
  1999年   6篇
  1998年   13篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   8篇
  1991年   14篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1976年   4篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1970年   4篇
  1969年   4篇
  1968年   3篇
  1967年   4篇
排序方式: 共有1139条查询结果,搜索用时 15 毫秒
161.
Detecting left ventricular (LV) dysfunction at an early stage is key in addressing the heart failure epidemic. In proteome profiling experiments in mice subjected either to aortic banding or sham, the circulating CXCR3 ligands monokine induced by interferon-γ (MIG) and interferon-γ inducible protein 10 (IP10) were 5 to 40 fold up-regulated at eight weeks. We assessed the diagnostic value of circulating NT-pro BNP and CXCR3 ligands (MIG, IP10, Interferon-inducible T-cell alpha chemo-attractant [I–TAC]) in patients with hypertension (≥140/90 mm Hg) associated with subclinical (n = 19) or symptomatic (n = 16) diastolic LV dysfunction on echocardiography and healthy controls. NT–pro BNP, MIG, IP10, I–TAC all increased (p ≤ 0.014) across the categories of worsening left ventricular dysfunction. In patients with symptomatic disease, MIG, IP10, and I–TAC increased 210% (p = 0.015), 140% (p = 0.007) and 120% (p = 0.035) more than NT-pro BNP. The optimal discrimination limits, obtained by maximizing Youden’s index were 246 pmol/L, 65 pg/mL, 93 pg/mL, and 24 pg/mL, respectively. The odds ratios associated with the four biomarkers were significant (p ≤ 0.010), ranging from 4.00 for IP10 to 9.69 for MIG. With adjustment for NT–pro BNP, the CXCR3 ligands retained significance (p ≤ 0.028). Adding optimized thresholds for the CXCR3 ligands to NT–pro BNP enhanced (p ≤ 0.014) the integrated discrimination improvement and the net reclassification improvement. In conclusion, congruent with the concept that inflammation plays a key role in the pathogenesis of LV dysfunction, MIG, IP10 and I–TAC add diagnostic accuracy over and beyond NT–pro BNP.  相似文献   
162.
163.
Hen egg can cause food hypersensitivity in infants and young children, and ovomucoid is the most allergenic factor among proteins contained in egg white. Since proteinase treatment, a well-recognized strategy in reducing food allergenicity, is ineffective when applied to ovomucoid because of its ability to act as trypsin inhibitor, we investigated the possibility of reducing the ovomucoid antiprotease activity and antigenic properties by covalently modifying its structure. The present paper reports data showing the ability of the Gln115 residue of ovomucoid to act as an acyl donor substrate for the enzyme transglutaminase and, as a consequence, to give rise to a covalent monodansylcadaverine conjugate of the protein in the presence of both enzyme and the diamine dansylated derivative. Moreover, we demonstrated that the obtained structural modification of ovomucoid significantly reduced the capability of the protein to inhibit trypsin activity, also having impact on its anti-ovomucoid serum-binding properties.  相似文献   
164.
In a current procedure for periodontal tissue regeneration, enamel matrix derivative (EMD), which is the active component, is mixed with a propylene glycol alginate (PGA) gel carrier and applied directly to the periodontal defect. Exposure of EMD to physiological conditions then causes it to precipitate. However, environmental changes during manufacture and storage may result in modifications to the conformation of the EMD proteins, and eventually premature phase separation of the gel and a loss in therapeutic effectiveness. The present work relates to efforts to improve the stability of EMD-based formulations such as Emdogain through the incorporation of arginine, a well-known protein stabilizer, but one that to our knowledge has not so far been considered for this purpose. Representative EMD-buffer solutions with and without arginine were analyzed by 3D-dynamic light scattering, UV-Vis spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy at different acidic pH and temperatures, T, in order to simulate the effect of pH variations and thermal stress during manufacture and storage. The results provided evidence that arginine may indeed stabilize EMD against irreversible aggregation with respect to variations in pH and T under these conditions. Moreover, stopped-flow transmittance measurements indicated arginine addition not to suppress precipitation of EMD from either the buffers or the PGA gel carrier when the pH was raised to 7, a fundamental requirement for dental applications.  相似文献   
165.
166.
167.
Identification of Prunus armeniaca cultivars by RAPD and SCAR markers   总被引:2,自引:0,他引:2  
Nineteen cultivars of apricot (Prunus armeniaca) were distinguished using random amplified polymorphic DNA (RAPD) markers. One decamer out of 44 used was useful to differentiate cultivars of the Campania Region from those of Northern Italy, North America and Greece. A sequence characterized amplified region (SCAR) marker was obtained. The results provide a protocol to fingerprint DNA of apricots as an efficient way to quality control and fraud prevention.  相似文献   
168.
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5–20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19.Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and “memory” KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells.Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.  相似文献   
169.
The nervous system is a crucial component of the body and damages to this system, either by of injury or disease, can result in serious or potentially lethal consequences. Restoring the damaged nervous system is a great challenge due to the complex physiology system and limited regenerative capacity.Polymers, either synthetic or natural in origin, have been extensively evaluated as a solution for restoring functions in damaged neural tissues. Polymers offer a wide range of versatility, in particular regarding shape and mechanical characteristics, and their biocompatibility is unmatched by other biomaterials, such as metals and ceramics. Several studies have shown that polymers can be shaped into suitable support structures, including nerve conduits, scaffolds, and electrospun matrices, capable of improving the regeneration of damaged neural tissues. In general, natural polymers offer the advantage of better biocompatibility and bioactivity, while synthetic or non-natural polymers have better mechanical properties and structural stability. Often, combinations of the two allow for the development of polymeric conduits able to mimic the native physiological environment of healthy neural tissues and, consequently, regulate cell behaviour and support the regeneration of injured nervous tissues.Currently, most of neural tissue engineering applications are in pre-clinical study, in particular for use in the central nervous system, however collagen polymer conduits aimed at regeneration of peripheral nerves have already been successfully tested in clinical trials.This review highlights different types of natural and synthetic polymers used in neural tissue engineering and their advantages and disadvantages for neural regeneration.  相似文献   
170.
In this study, the effect of sequential inoculation with non-Saccharomyces (Hanseniaspora guilliermondii) and Saccharomyces cerevisiae yeast on the distinctive characteristics of the Campanino white wine was investigated. For this purpose, three independent winemaking experiments were carried out on an industrial scale (batches A, B and C). In detail, the first one was carried out using the sequential inoculation technique while the other two, using a S. cerevisiae single-strain starter or no inoculation representing the control batches. Microbiological and chemical parameters and sensorial profiles of the wines were defined. Interestingly, the results showed that when sequential cultures (H. guilliermondii in a sequential mixture with S. cerevisiae) were used, a better wine aroma and quality was observed. More specifically, the wine obtained by sequential inoculation showed lower acetic acid values and enhanced volatile profiles than the wine from the control batches. Finally, sensorial analysis confirmed that the sequential cultures led to an improvement in wine flavour. Therefore, results suggest that the sequential inoculation using non-Saccharomyces and Saccharomyces yeast represents a biotechnological practice that can improve the quality features of traditional white wine. It has been shown for the first time that on an industrial scale H. guilliermondii could be used in sequential inoculum with S. cerevisiae in making white Campanino wine.

Graphical abstract

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号