首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   23篇
  2023年   3篇
  2022年   5篇
  2021年   14篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   21篇
  2014年   27篇
  2013年   22篇
  2012年   39篇
  2011年   44篇
  2010年   27篇
  2009年   12篇
  2008年   37篇
  2007年   26篇
  2006年   27篇
  2005年   18篇
  2004年   22篇
  2003年   21篇
  2002年   17篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有446条查询结果,搜索用时 156 毫秒
91.
Synonymous or silent mutations are often overlooked in genetic analyses for disease-causing mutations unless they are directly associated with potential splicing defects. More recent studies, however, indicate that some synonymous single polynucleotide polymorphisms (sSNPs) are associated with changes in protein expression, and in some cases, protein folding and function. The impact of codon usage and mRNA structural changes on protein translation rates and how they can affect protein structure and function is just beginning to be appreciated. Examples are given here that demonstrate how synonymous mutations alter the translational kinetics and protein folding and/or function. The mechanism for how this occurs is based on a model in which codon usage modulates the translational rate by introducing pauses caused by nonoptimal or rare codons or by introducing changes in the mRNA structure, and this in turn influences co-translational folding. Two examples of this include the multidrug resistance protein (p-glycoprotein) and the cystic fibrosis transmembrane conductance regulator gene (CFTR). CFTR is also used here as a model to illustrate how synonymous mutations can be examined using in silico predictive methods to identify which sSNPs have the potential to change protein structure. The methodology described here can be used to help identify “non-silent” synonymous mutations in other genes.  相似文献   
92.

Background

Graves’ disease (GD) is a complex disease in which genetic predisposition is modified by environmental factors. Each gene exerts limited effects on the development of autoimmune disease (OR = 1.2–1.5). An epidemiological study revealed that nearly 70% of the risk of developing inherited autoimmunological thyroid diseases (AITD) is the result of gene interactions. In the present study, we analyzed the effects of the interactions of multiple loci on the genetic predisposition to GD. The aim of our analyses was to identify pairs of genes that exhibit a multiplicative interaction effect.

Material and Methods

A total of 709 patients with GD were included in the study. The patients were stratified into more homogeneous groups depending on the age at time of GD onset: younger patients less than 30 years of age and older patients greater than 30 years of age. Association analyses were performed for genes that influence the development of GD: HLADRB1, PTPN22, CTLA4 and TSHR. The interactions among polymorphisms were analyzed using the multiple logistic regression and multifactor dimensionality reduction (MDR) methods.

Results

GD patients stratified by the age of onset differed in the allele frequencies of the HLADRB1*03 and 1858T polymorphisms of the PTPN22 gene (OR = 1.7, p = 0.003; OR = 1.49, p = 0.01, respectively). We evaluated the genetic interactions of four SNPs in a pairwise fashion with regard to disease risk. The coexistence of HLADRB1 with CTLA4 or HLADRB1 with PTPN22 exhibited interactions on more than additive levels (OR = 3.64, p = 0.002; OR = 4.20, p < 0.001, respectively). These results suggest that interactions between these pairs of genes contribute to the development of GD. MDR analysis confirmed these interactions.

Conclusion

In contrast to a single gene effect, we observed that interactions between the HLADRB1/PTPN22 and HLADRB1/CTLA4 genes more closely predicted the risk of GD onset in young patients.  相似文献   
93.
Journal of Physiology and Biochemistry - There is a gap in the knowledge regarding regulation of local renin–angiotensin system (RAS) in skeletal muscle during development of obesity and...  相似文献   
94.
Genetic and biological characterization of new hepaciviruses infecting animals contributes to our understanding of the ultimate origins of hepatitis C virus (HCV) infection in humans and dramatically enhances our ability to study its pathogenesis using tractable animal models. Animal homologs of HCV include a recently discovered canine hepacivirus (CHV) and GB virus B (GBV-B), both viruses with largely undetermined natural host ranges. Here we used a versatile serology-based approach to determine the natural host of the only known nonprimate hepacivirus (NPHV), CHV, which is also the closest phylogenetic relative of HCV. Recombinant protein expressed from the helicase domain of CHV NS3 was used as antigen in the luciferase immunoprecipitation system (LIPS) assay to screen several nonprimate animal species. Thirty-six samples from 103 horses were immunoreactive, and viral genomic RNA was present in 8 of the 36 seropositive animals and none of the seronegative animals. Complete genome sequences of these 8 genetically diverse NPHVs showed 14% (range, 6.4% to 17.2%) nucleotide sequence divergence, with most changes occurring at synonymous sites. RNA secondary structure prediction of the 383-base 5' untranslated region of NPHV was refined and extended through mapping of polymorphic sites to unpaired regions or (semi)covariant pairings. Similar approaches were adopted to delineate extensive RNA secondary structures in the coding region of the genome, predicted to form 27 regularly spaced, thermodynamically stable stem-loops. Together, these findings suggest a promising new nonprimate animal model and provide a database that will aid creation of functional NPHV cDNA clones and other novel tools for hepacivirus studies.  相似文献   
95.
Hantaviruses are important contributors to disease burden in the New World, yet many aspects of their distribution and dynamics remain uncharacterized. To examine the patterns and processes that influence the diversity and geographic distribution of hantaviruses in South America, we performed genetic and phylogeographic analyses of all available South American hantavirus sequences. We sequenced multiple novel and previously described viruses (Anajatuba, Laguna Negra-like, two genotypes of Castelo dos Sonhos, and two genotypes of Rio Mamore) from Brazilian Oligoryzomys rodents and hantavirus pulmonary syndrome cases and identified a previously uncharacterized species of Oligoryzomys associated with a new genotype of Rio Mamore virus. Our analysis indicates that the majority of South American hantaviruses fall into three phylogenetic clades, corresponding to Andes and Andes-like viruses, Laguna Negra and Laguna Negra-like viruses, and Rio Mamore and Rio Mamore-like viruses. In addition, the dynamics and distribution of these viruses appear to be shaped by both the geographic proximity and phylogenetic relatedness of their rodent hosts. The current system of nomenclature used in the hantavirus community is a significant impediment to understanding the ecology and evolutionary history of hantaviruses; here, we suggest strict adherence to a modified taxonomic system, with species and strain designations resembling the numerical system of the enterovirus genus.  相似文献   
96.
The "glutamate" theory of schizophrenia emerged from the observation that phencyclidine (PCP), an open channel antagonist of the NMDA subtype of glutamate receptor, induces schizophrenia-like behaviors in humans. PCP also induces a complex set of behaviors in animal models of this disorder. PCP also increases glutamate and dopamine release in the medial prefrontal cortex and nucleus accumbens, brain regions associated with expression of psychosis. Increased motor activation is among the PCP-induced behaviors that have been widely validated as models for the characterization of new antipsychotic drugs. The peptide transmitter N-acetylaspartylglutamate (NAAG) activates a group II metabotropic receptor, mGluR3. Polymorphisms in this receptor have been associated with schizophrenia. Inhibitors of glutamate carboxypeptidase II, an enzyme that inactivates NAAG following synaptic release, reduce several behaviors induced by PCP in animal models. This research tested the hypothesis that two structurally distinct NAAG peptidase inhibitors, ZJ43 and 2-(phosphonomethyl)pentane-1,5-dioic acid, would elevate levels of synaptically released NAAG and reduce PCP-induced increases in glutamate and dopamine levels in the medial prefrontal cortex and nucleus accumbens. NAAG-like immunoreactivity was found in neurons and presumptive synaptic endings in both regions. These peptidase inhibitors reduced the motor activation effects of PCP while elevating extracellular NAAG levels. They also blocked PCP-induced increases in glutamate but not dopamine or its metabolites. The mGluR2/3 antagonist LY341495 blocked these behavioral and neurochemical effects of the peptidase inhibitors. The data reported here provide a foundation for assessment of the neurochemical mechanism through which NAAG achieves its antipsychotic-like behavioral effects and support the conclusion NAAG peptidase inhibitors warrant further study as a novel antipsychotic therapy aimed at mGluR3.  相似文献   
97.
High accuracy (fidelity) of DNA replication is important for cells to preserve the genetic identity and to prevent the accumulation of deleterious mutations. The error rate during DNA replication is as low as 10(-9) to 10(-11) errors per base pair. How this low level is achieved is an issue of major interest. This review is concerned with the mechanisms underlying the fidelity of the chromosomal replication in the model system Escherichia coli by DNA polymerase III holoenzyme, with further emphasis on participation of the other, accessory DNA polymerases, of which E.?coli contains four (Pols I, II, IV, and V). Detailed genetic analysis of mutation rates revealed that (1) Pol II has an important role as a back-up proofreader for Pol III, (2) Pols IV and V do not normally contribute significantly to replication fidelity, but can readily do so under conditions of elevated expression, (3) participation of Pols IV and V, in contrast to that of Pol II, is specific to the lagging strand, and (4) Pol I also makes a lagging-strand-specific fidelity contribution, limited, however, to the faithful filling of the Okazaki fragment gaps. The fidelity role of the Pol III τ subunit is also reviewed.  相似文献   
98.
Jac1p is a conserved, specialized J-protein that functions with Hsp70 in Fe-S cluster biogenesis in mitochondria of the yeast Saccharomyces cerevisiae. Although Jac1p as well as its specialized Hsp70 partner, Ssq1p, binds directly to the Fe-S cluster scaffold protein Isu, the Jac1p-Isu1p interaction is not well understood. Here we report that a C-terminal fragment of Jac1p lacking its J-domain is sufficient for interaction with Isu1p, and amino acid alterations in this domain affect interaction with Isu1p but not Ssq1p. In vivo, such JAC1 mutations had no obvious phenotypic effect. However, when present in combination with a mutation in SSQ1 that causes an alteration in the substrate binding cleft, growth was significantly compromised. Wild type Jac1p and Isu1p cooperatively stimulate the ATPase activity of Ssq1p. Jac1p mutant protein is only slightly compromised in this regard. Our in vivo and in vitro results indicate that independent interaction of Jac1p and the Isu client protein with Hsp70 is sufficient for robust growth under standard laboratory conditions. However, our results also support the idea that Isu protein can be "targeted" to Ssq1p after forming a complex with Jac1p. We propose that Isu protein targeting may be particularly important when environmental conditions place high demands on Fe-S cluster biogenesis or in organisms lacking specialized Hsp70s for Fe-S cluster biogenesis.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号