首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   23篇
  451篇
  2023年   5篇
  2022年   8篇
  2021年   14篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   21篇
  2014年   27篇
  2013年   22篇
  2012年   39篇
  2011年   44篇
  2010年   27篇
  2009年   12篇
  2008年   37篇
  2007年   26篇
  2006年   27篇
  2005年   18篇
  2004年   22篇
  2003年   21篇
  2002年   17篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
111.
112.

Background  

Cellular response to external stimuli requires propagation of corresponding signals through molecular signaling pathways. However, signaling pathways are not isolated information highways, but rather interact in a number of ways forming sophisticated signaling networks. Since defects in signaling pathways are associated with many serious diseases, understanding of the crosstalk between them is fundamental for designing molecularly targeted therapy. Unfortunately, we still lack technology that would allow high throughput detailed measurement of activity of individual signaling molecules and their interactions. This necessitates developing methods to prioritize selection of the molecules such that measuring their activity would be most informative for understanding the crosstalk. Furthermore, absence of the reaction coefficients necessary for detailed modeling of signal propagation raises the question whether simple parameter-free models could provide useful information about such pathways.  相似文献   
113.
114.
Nucleoside 5′-O-phosphorothioates are formed in vivo as primary products of hydrolysis of oligo(nucleoside phosphorothioate)s (PS-oligos) that are applied as antisense therapeutic molecules. The biodistribution of PS-oligos and their pharmacokinetics have been widely reported, but little is known about their subsequent decay inside the organism. We suggest that the enzyme responsible for nucleoside 5′-O-monophosphorothioate ((d)NMPS) metabolism could be histidine triad nucleotide-binding protein 1 (Hint-1), a phosphoramidase belonging to the histidine triad (HIT) superfamily that is present in all forms of life. An additional, but usually ignored, activity of Hint-1 is its ability to catalyze the conversion of adenosine 5′-O-monophosphorothioate (AMPS) to 5′-O-monophosphate (AMP). By mutagenetic and biochemical studies, we defined the active site of Hint-1 and the kinetic parameters of the desulfuration reaction (P-S bond cleavage). Additionally, crystallographic analysis (resolution from 1.08 to 1.37 Å) of three engineered cysteine mutants showed the high similarity of their structures, which were not very different from the structure of WT Hint-1. Moreover, we found that not only AMPS but also other ribonucleoside and 2′-deoxyribonucleoside phosphorothioates are desulfurated by Hint-1 at the following relative rates: GMPS > AMPS > dGMPS ≥ CMPS > UMPS > dAMPS ≫ dCMPS > TMPS, and during the reaction, hydrogen sulfide, which is thought to be the third gaseous mediator, was released.  相似文献   
115.
116.
117.
Protein N-homocysteinylation involves a post-translational modification by homocysteine (Hcy)-thiolactone. In humans, about 70% of circulating Hcy is N-linked to blood proteins, mostly to hemoglobin and albumin. It was unclear what protein site(s) were prone to Hcy attachment and how N-linked Hcy affected protein function. Here we show that Lys(525) is a predominant site of N-homocysteinylation in human serum albumin in vitro and in vivo. We also show that the reactivity of albumin lysine residues, including Lys(525), is affected by the status of Cys(34). The disulfide forms of circulating albumin, albumin-Cys(34)-S-S-Cys and albumin-Cys(34)-S-S-Hcy, are N-homocysteinylated faster than albumin-Cys(34)-SH. Although N-homocysteinylations of albumin-Cys(34)-SH and albumin-Cys(34)-S-S-Cys yield different primary products, subsequent thiol-disulfide exchange reactions result in the formation of a single product, N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH. We also show that N-homocysteinylation affects the susceptibility of albumin to oxidation and proteolysis. The data suggest that a disulfide at Cys(34) of albumin promotes conversion of N-(Hcy-SH)-albumin-Cys(34)-SH to a proteolytically sensitive form N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH, which would facilitate clearance of the N-homocysteinylated form of mercaptoalbumin.  相似文献   
118.
The interaction of bone cells and their underlying extracellular matrix impacts biological processes such as maintenance of tissue integrity. The biological recognition of the extracellular matrix by attached cells is mediated by the activity of integrins that recognize adhesive-specific domains. The most widely recognized adhesive motif is the RGD sequence, common to many of the adhesive matrix molecules. Here, we show that cyclo DFKRG which was previously selected to increase cell adhesion of human bone marrow stromal cells (HBMSC), increases both cell differentiation and mineralization through activation of tyrosine kinases, focal adhesion kinase (p(125)FAK) and Mitogen Activated Protein (MAP) kinases.  相似文献   
119.
Even though endothelin is recognized as an important vasoregulatory molecule, the roles of endothelin receptors in specific cell types are not yet fully understood. Mice with a null mutation in endothelin A receptor gene (ET(A)) or in the gene of its ligand (endothelin 1) die neonatally due to craniofacial and cardiac abnormalities. This early lethality has in the past hindered studies on the role of endothelin in cardiovascular physiology and pathophysiology. To overcome this obstacle, we utilized the cre/loxP technology to generate mice in which the ET(A) gene could be deleted specifically in cardiomyocytes. The cre recombinase transgene driven by the alpha-myosin heavy-chain promoter deleted the floxed ET(A) allele specifically in the hearts of these mice, resulting in a 78% reduction in cardiac ET(A) mRNA level compared to wild-type controls. Cardiomyocyte-specific ET(A) knockout animals are viable and exhibit normal growth, cardiac anatomy, and cardiac contractility, as assessed by echocardiography. In addition, these animals exhibit hypertrophic and contractile responses to 10-day infusion of angiotensin II or isoproterenol similar to those observed in control animals. These results indicate that in adult mice cardiac ET(A) receptors are not necessary for either baseline cardiac function or stress-induced response to angiotensin II or isoproterenol.  相似文献   
120.
Using recently developed methodology, which includes HPLC prepurification followed by GC/MS with isotope dilution, we analyzed urinary excretion of possible repair products of oxidative DNA damage-8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and 5-(hydroxymethyl)uracil (5-HMUra)-in mammalian species that substantially differ in metabolic rate and longevity, namely, mice, rats, rabbits, dogs, pigs, and humans. We found highly significant, positive correlations between specific metabolic rates of the animals studied and their excretion rates for all the modifications analyzed with respective r values for the lesions of (8-oxoGua) r = .891, p < .01; (8-oxodG) r = .998, p < .001; and (5-HMUra) r = .949, p < .005. However, only 8-oxoGua significantly correlates negatively with maximum life span (MLSP) (r = -.928, p < .01). Despite substantial differences in MLSP between humans and pigs (120 and 27 years, respectively), the rates of excretion of all measured modifications were very similar. The urinary levels of all measured modifications found in our study for mouse and humans account respectively for about 34,000 and 2800 repaired events per average cell, per 24 h. It is therefore possible that the high metabolic rate in mice (or other short-lived animals) may be responsible for severe everyday oxidative DNA insults that may be accumulated faster than in long-lived species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号