首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12390篇
  免费   814篇
  国内免费   1篇
  13205篇
  2023年   118篇
  2022年   211篇
  2021年   419篇
  2020年   289篇
  2019年   356篇
  2018年   435篇
  2017年   430篇
  2016年   600篇
  2015年   795篇
  2014年   793篇
  2013年   883篇
  2012年   1085篇
  2011年   969篇
  2010年   560篇
  2009年   525篇
  2008年   670篇
  2007年   581篇
  2006年   562篇
  2005年   464篇
  2004年   435篇
  2003年   393篇
  2002年   342篇
  2001年   186篇
  2000年   141篇
  1999年   132篇
  1998年   95篇
  1997年   64篇
  1996年   53篇
  1995年   43篇
  1994年   47篇
  1993年   45篇
  1992年   53篇
  1991年   36篇
  1990年   34篇
  1989年   23篇
  1988年   32篇
  1987年   21篇
  1986年   26篇
  1985年   30篇
  1984年   14篇
  1983年   17篇
  1982年   19篇
  1981年   18篇
  1980年   10篇
  1979年   14篇
  1978年   18篇
  1977年   13篇
  1976年   10篇
  1975年   11篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
The glial cells of the prothoracic ganglion of the hawk moth Manduca sexta were studied in histological sections of several postembryonic stages and classified according to cell morphology, size, staining properties, and topographical relationships. In general, each glial cell type was found to be confined to one of the major ganglionic domains and each of these domains (i.e., perineurium, cell body rind, glial cover of the neuropil, and neuropil) was found to comprise specific cell types. Some types of glia were recognized in both larval and later stages, but other types were found exclusively from late pupal stages. It is proposed that the higher morphological diversity expressed by the glia of the pharate adult is attained by differentiation of new cell types during metamorphosis. Before the differentiation of new cell types, extensive cell death and cell proliferation seem to occur within some glial subpopulations.  相似文献   
92.
The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.  相似文献   
93.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   
94.
Cholangiocarcinoma represents 10% of primary liver malignancies and accounts for less than 3% of all gastrointestinal malignant tumors, with an enormous geographical variation. This neoplasia can arise from the biliary tract epithelium or hepatic progenitor cells. Depending on the anatomic localization, it is classified into three subtypes: intrahepatic, perihilar and distal. This fact is one of the main difficulties, because there are many studies that indistinctly include the results in the management of these different types of cholangiocarcinoma, without differentiating its location and even including gallbladder cancer.There are many controversial points in epidemiology, liver transplantation as a treatment, limitations of different results by group and type of treatment, histological testing and chemotherapy. This is a narrative review about topics in cholangiocarcinoma. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
95.
This article describes the phytochemical study of Cannabis sativa roots from northeastern Brazil. The dried plant material was pulverized and subjected to exhaustive maceration with ethanol at room temperature, obtaining the crude ethanolic extract (Cs-EEBR). The volatile compounds were analyzed by gas chromatography coupled with mass spectrometry (GC/MS), which allowed to identify 22 compounds by comparing the linear retention index (LRI), the similarity index (SI) and the fragmentation pattern of the constituents with the literature. By this technique the major compounds identified were: friedelan-3-one and β-sitosterol. In addition, two fractions were obtained from Cs-EEBR by classical column chromatography and preparative thin layer chromatography. These fractions were analyzed by NMR and IR and together with the mass spectrometry data allowed to identify the compounds: epifriedelanol, friedelan-3-one, β-sitosterol and stigmasterol. The study contributed to the phytochemical knowledge of Cannabis sativa, specifically the roots, as there are few reports on the chemical constituents of this part of the plant.  相似文献   
96.
International Microbiology - This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the...  相似文献   
97.
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.  相似文献   
98.
99.
100.
Journal of Physiology and Biochemistry - Aerobic exercise training induces a unique cardioprotective phenotype, but it is becoming clear that it does not promote the same structural, functional,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号