To complete meiosis II in animal cells, the male DNA material needs to meet the female DNA material contained in the female pronucleus at the egg center, but it is not known how the male pronucleus, deposited by the sperm at the periphery of the cell, finds the cell center in large eggs. Pronucleus centering is an active process that appears to involve microtubules and molecular motors. For small and medium-sized cells, the force required to move the centrosome can arise from either microtubule pushing on the cortex, or cortically-attached dynein pulling on microtubules. However, in large cells, such as the fertilized Xenopus laevis embryo, where microtubules are too long to support pushing forces or they do not reach all boundaries before centrosome centering begins, a different force generating mechanism must exist. Here, we present a centrosome positioning model in which the cytosolic drag experienced by cargoes hauled by cytoplasmic dynein on the sperm aster microtubules can move the centrosome towards the cell’s center. We find that small, fast cargoes (diameter ∼100 nm, cargo velocity ∼2 µm/s) are sufficient to move the centrosome in the geometry of the Xenopus laevis embryo within the experimentally observed length and time scales. 相似文献
This work evaluates the pretreatment of sugarcane bagasse combining supercritical carbon dioxide (SC-CO2) and ultrasound to enhance the enzymatic hydrolysis of pretreated bagasse. In a first step the influence of process variables on the SC-CO2 pretreatment to enhance the enzymatic hydrolysis was evaluated by mean of a Plackett–Burmann design. Then, the sequential treatment combining ultrasound + SC-CO2 was evaluated. Results show that treatment using SC-CO2 increased the amount of fermentable sugar obtained of about 280% compared with the non-treated bagasse, leading to a hydrolysis efficiency (based on the amount of cellulose) as high as 74.2%. Combining ultrasound + SC-CO2 treatment increased about 16% the amount of fermentable sugar obtained by enzymatic hydrolysis in comparison with the treatment using only ultrasound. From the results presented in this work it can be concluded that the combined ultrasound + SC-CO2 treatment is an efficient and promising alternative to carry out the pretreatment of lignocellulosic feedstock at relatively low temperatures without the use of hazardous solvents. 相似文献
Understanding how climate change will affect regeneration from seeds is important for developing conservation strategies. We evaluated seed germination requirements for sympatric species of Xyris from montane rupestrian grasslands (campo rupestre) in Brazil to determine their thermal niche and thermal requirements for seed germination. We also assessed whether projected temperature increases would affect seed germination of the species. Seed germination was evaluated at a wide range of constant temperatures (10–40°C) under light (12-hr photoperiod) and dark conditions. Base temperatures (Tb) and thermal times for 50% germination (θ50) were calculated for three species. The effects of projected mean temperature increase on seed germination percentage and timing were evaluated. All species revealed an absolute light requirement for germination. Thermal germination niche breadth was greatest for X. asperula (15 to 35°C) and narrowest for X. seubertii (20 and 25°C). Base temperatures for X. asperula, X. pilosa and X. trachyphylla were 9.0, 12.8 and 11.1°C, respectively. In the scenario with the highest temperature increase (A2), the greatest reductions in seed germination are observed for X. pilosa and X. seubertii. The lowest projected temperature increase (2°C) was sufficient to decrease by 1 day the germination time of X. asperula and X. pilosa. Species of Xyris do not present a pattern for thermal germination niche and thermal requirements values, indicating that the effects of climate warming on the regeneration of these seeds will probably vary among species. 相似文献
This study compared the perceptual responses, physiological indicators and technical parameters between different training protocols focused on upper body exercises. A randomized crossover design was performed, and 12 trained individuals (age: 27.1 ± 5.7 years; height: 173.7 ± 10.7 cm; BMI: 23.9 ± 2.3) completed three resistance training sessions under different protocols separated by at least 72 h: traditional training (TT) (4 x 6 repetitions at 85% of 1RM with 120 s of rest between sets), cluster 1 (CL1) (4 x 2+2+2 repetitions at 85% of 1RM with 15 s of intra-rep rest and 80 s between sets), and cluster 2 (CL2) (24 repetitions at 85% of 1RM with 15 s of inter-set recovery). Before training, arterial blood pressure (BP) and repetitions to failure of pull-up and push-up (FT) were collected. Muscle oxygen saturation (SmO2) in the chest and movement velocity were evaluated in barbell bench press during the training session. After finishing, lactate, BP, rate of perceived exertion and FT were assessed. The percentage of velocity loss (TT: 19.24%; CL1: 5.02% and CL2: 7.30%) in the bench press and lactate concentration (TT: 8.90 mmol·l-1; CL1: 6.13 mmol·l-1 and CL2: 5.48 mmol·l-1) were significantly higher (p < 0.05) for TT compared to both CLs. RPE values were higher (p < 0.05) in TT compared to CL1 (7.95 a.u. vs. 6.91 a.u., respectively). No differences (p > 0.05) were found between protocols for SmO2, BP, FT, pain or heart rate between set configurations. Cluster configurations allow one to maintain higher movement velocity and lower lactate and RPE values compared to a traditional configuration, but with similar concentrations of SmO2. 相似文献
AbstractArsenic, cadmium, lead, and mercury in fish is the result of long-term biomagnification in the food chain and is of public concern, due to the toxicity they engender. The objective of this research was to determine the concentrations of arsenic, cadmium, lead, and mercury in 13 species of marine fish broadly commercialized in Aracaju, SE, Brazil and to evaluate the risks of fish consumption associated with these trace elements, using the Target Hazard Quotient (THQ). As, Cd, and Pb levels were measured with inductively coupled plasma mass spectrometry (ICP-MS), and mercury was analyzed via cold vapor atomic absorption spectrometry. The results indicate a large variability in concentrations for arsenic (0.07–2.03?mg kg–1) and mercury (0.01–1.44?mg kg–1), associated with the animal dietary category. Cadmium (0.04–0.19?mg kg–1) and lead (<0.01–0.45?mg kg–1), on the other hand showed a mild variability. None of the evaluated specimens had As, Cd, and Pb THQ values higher than 1. The THQ values for mercury were higher but indicated no consumption risk, except for amberjack, and snook fish. Overall THQ indicates lower risk of consumption in fish that are at the base of the food chain, than in those that are top predators. 相似文献
Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria.
Results
We report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence.
Conclusions
The minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach lineages. FBA performed on the reconstructed networks from the two bacteria helps to refine the functional analysis of the genomes enabling us to postulate how slightly different host metabolic contexts drove their parallel evolution.
The genome sequences of Burkholderia sp. strains CCGE1002 from Mexico and H160 from Brazil, isolated from legume nodules, are reported. Their gene contents in relation to plant-microbe interactions and xenobiotic degradation are discussed. 相似文献
Clinical data published in recent years have demonstrated positive effects of collagen hydrolysate (CH) on skin aging clinical signs. CH use as food supplement has a long history; however, few studies have addressed the underlying purpose of CH on the cellular and molecular biology of skin cells that could elucidate clinical improvement findings. Wide diversity of characteristics has been reported for dermal fibroblasts derived from different body sites and it is unknown whether collagen peptides could modulate differently cells from chronological aged and photoaged skin areas. This study investigated the influence of CH on the extracellular matrix metabolism and proliferation of human dermal fibroblasts (HDFs) derived from chronological aged (sun‐protected) and photoaged (sun‐exposed) body sites. CH treatment did not affect cellular proliferation of either cell cultures, but notably modulated cell metabolism in monolayer model, increasing the content of dermal matrix precursor and main protein, procollagen I and collagen I, respectively. These effects were confirmed in the human dermal equivalent model. The increase in collagen content in the cultures was attributed to stimulation of biosynthesis and decreased collagen I metabolism through inhibition of metalloproteinase activity (MMP) 1 and 2. Modulation of CH in dermal metabolism did not differ between cells derived from sun‐protected and sun‐exposed areas, although lower concentrations of CH seemed to be enough to stimulate sun‐exposed‐derived HDFs, suggesting more pronounced effect in these cells. This study contributes to understanding the biological effects of CH on skin cells and viability of its use as a functional ingredient in food supplements. 相似文献