首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112505篇
  免费   7829篇
  国内免费   17篇
  120351篇
  2023年   607篇
  2022年   541篇
  2021年   1239篇
  2020年   1103篇
  2019年   1175篇
  2018年   2744篇
  2017年   2458篇
  2016年   3458篇
  2015年   5112篇
  2014年   5224篇
  2013年   6942篇
  2012年   8488篇
  2011年   7930篇
  2010年   5030篇
  2009年   3793篇
  2008年   6450篇
  2007年   6337篇
  2006年   5819篇
  2005年   5466篇
  2004年   5119篇
  2003年   4700篇
  2002年   4323篇
  2001年   2272篇
  2000年   2208篇
  1999年   1921篇
  1998年   854篇
  1997年   668篇
  1996年   569篇
  1995年   589篇
  1994年   592篇
  1993年   454篇
  1992年   1271篇
  1991年   1184篇
  1990年   1047篇
  1989年   977篇
  1988年   919篇
  1987年   780篇
  1986年   711篇
  1985年   795篇
  1984年   690篇
  1983年   570篇
  1982年   443篇
  1981年   432篇
  1979年   576篇
  1978年   450篇
  1977年   397篇
  1976年   384篇
  1975年   437篇
  1974年   450篇
  1973年   460篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Lettuce ferredoxin has been purified to homogeneity, with a yield of 18 mg/kg of denerved leaves. It crystallizes in magnificent needles, often clustered in broom-like sheaves. The absorption spectrum showed maxima at 460, 422, 330 and 274 nm,with a ratio A422/A274, of 0.46. The mM absorption coefficient was 9.74 at 422 nm, and 21.62 at 274 nm. This ferredoxin showed a pI = 4.7 and an E0 = ?425 mV (at pH = 7.7). MWs of 12 400, 11480 and 13000 were obtained by sucrose gradient centrifugation, and on the basis of the amino acid composition and the iron content, respectively, with an average of 12 300. The amino acid analysis showed the existence of one methionine residue per mole, with 105 amino acid residues. There are two iron atoms and two labile sulfide groups per mole; 4 half-cystine residues were found by performic acid oxidation, and 5 cysteine groups when determined by titration with pHMB. The native protein is not fixed on thiol-Sepharose 4B, but it is quantitatively retained after incubation with 8 M urea. Lettuce ferredoxin showed a 62, 58 and 78% effectiveness with the spinach ferredoxin-NADP reductase, nitrite reductase and fructose-1,6-diphosphatase (FDPase), respectively, when compared with the spinach ferredoxin. This different behaviour of both ferredoxins is joined to genetic-structural relationships, and suggests that the role of ferredoxin in FDPase activation is more sophisticated than that of a mere nonspecific reductant.  相似文献   
993.
994.
J Pouysségur  K M Yamada 《Cell》1978,13(1):139-140
We have isolated and immunochemically characterized a major membrane glycoprotein of mouse 3T3 cells. This GRP (glucose/glycosylation-regulated protein) is labeled by lactoperoxidase-mediated iodination and by 14C-glucosamine, binds concanavalin A and has an apparent molecular weight in SDS-polyacrylamide gels of 92,000 daltons (or 97,000 daltons in a discontinuous gel system). Glycosylated GRP was isolated from plasma membranes using Triton X-100 extraction, affinity chromatography on concanavalin A-Sepharose and preparative SDS gel electrophoresis.Antibody against this glycosylated GRP stains the external surfaces of mouse cells and induces patches and caps. Immunofluorescence and immunoprecipitation studies indicate that this glycoprotein can exist in the membrane in two molecular forms, either as a glycosylated or as a nonglycosylated protein. The nonglycosylated form is induced under conditions of limited glycosylation or glucose deprivation. This nonglycosylated GRP remains accessible to antibodies on the exterior of cells, but becomes inaccessible to lactoperoxidase.The immunoprecipitation of the 92K GRP with its specific antibody is always associated with the precipitation of a small fraction of the other major GRP of molecular weight 75,000 daltons. We suggest that both GRP (92K and 75K) may function in close association in the membrane.  相似文献   
995.
996.
997.
Fourteen different broth media were autoclaved under anaerobic conditions and then exposed to atmospheric oxygen. The hydrogen peroxide and superoxide radical formation as well as the bactericidal effect of the media were studied. The rate of killing of Peptostreptococcus anaerobius VPI 4330-1 was high in media that rapidly autoxidized and accumulated hydrogen peroxide. In actinomyces broth (BBL), 50% of the cells were killed within 2 min, and in Brewer thioglycolate medium (Difco), 50% were killed within 11 min, whereas more than 50% of the cells survived for more than 2 h in Clausen medium (Oxoid), fluid thioglycolate medium (BBL), and thioglycolate medium without dextrose or indicator (Difco). Only media that contained phosphate and glucose had a tendency to accumulate hydrogen peroxide. A solution of phosphate and glucose autoxidized when it had been heated to 120 degrees C for at least 5 min and when the pH of the solution was higher than 6.5. Transitional metal ions catalyzed the autoxidation, but they were not necessary for the reaction to occur. Of the other substances heated in phosphate buffer, only alpha-hydroxycarbonyl compounds autoxidized with accumulation of hydrogen peroxide. Superoxide dismutase decreased the autoxidation rate of most of the broth media. This indicated that superoxide radicals were generated in these media.  相似文献   
998.
Summary We investigated the excretion of citric and isocitric acids in a strain of Saccharomycopsis lipolytica grown on either n-paraffins, glucose, or glycerol. These acids were excreted in the ratio of 67:33 on n-paraffins and roughly 92:8 on either glucose or glycerol. However, with all the carbon sources used, the relative amount of isocitric acid in the intracellular pool remained below 10%. The assimilation of citric and isocitric acids was prevented when glucose or glycerol were the carbon sources, but not when n-paraffins were used. Citric acid stopped isocitric acid assimilation. These phenomena of selective assimilation and/or uptake might explain the variations observed in the ratio of citric to isocitric acids excreted on different carbon sources.  相似文献   
999.
End plate potentials (e.p.p.s.) and miniature end plate potentials (m.e.p.p.s.) were recorded intracellularly at the neuromuscular junction of the frog sartorius muscle. Addition of as little as 8.5 x10(-8)M PGE1 reduced the mean m.e.p.p. frequency. The mean amplitude of m.e.p.p.s was not changed, the mean amplitude of the e.p.p.s and the quantum content of the transmitter released by a nerve impulse was slightly reduced. A decrease in mean m.e.p.p. frequency was also seen in response to the administration of 8.5 x 10(-8)M PG2 alpha. The mean amplitude of e.p.p.s and m.e.p.p.s and the quantum content remained unchanged. The possible presynaptic mode of action of PGs in the preparation of discussed.  相似文献   
1000.
Some properties of the inducible α-glucosidase system of Mucor rouxii were investigated. This enzymatic activity was induced after resuspending glucose-grown cells in a maltose-supplemented medium. The wall-bound activity of α-glucosidase was determined by using intact cells in the enzymatic assay; this activity represented from 80 to 90% of the total activity present in the induced cells. The addition of glucose before, or during, the induction period repressed α-glucosidase synthesis. α-Glucosidase induction was tested under aerobic and anaerobic conditions. It was found that the enzyme synthesis and the appearance of wall-bound activity were not affected by changing the gaseous environment. On the other hand, it was observed that anaerobically grown yeast-like cells were much less efficient than aerobic mycelia to develop wall-bound α-glucosidase activity. This could explain earlier observations about the incapacity of M. rouxii to utilize maltose as a substrate for anaerobic growth. This idea was strengthened by the fact that, if an anaerobic culture was induced to develop under a mycelial morphology by adding to the medium the chemical agent EDTA, these cells also acquired the capacity to grow on maltose and concomitantly possessed wall-bound α-glucosidase activity. The relevance of the structure of the cell wall on the capacity of M. rouxii to metabolize maltose is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号