首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111643篇
  免费   4096篇
  国内免费   1021篇
  2022年   702篇
  2021年   1263篇
  2020年   882篇
  2019年   1115篇
  2018年   2032篇
  2017年   1961篇
  2016年   4031篇
  2015年   7757篇
  2014年   7543篇
  2013年   7651篇
  2012年   7161篇
  2011年   4282篇
  2010年   3374篇
  2009年   3179篇
  2008年   1943篇
  2007年   1727篇
  2006年   1714篇
  2005年   7579篇
  2004年   6203篇
  2003年   4307篇
  2002年   1784篇
  2001年   1517篇
  2000年   767篇
  1999年   1836篇
  1998年   584篇
  1992年   2102篇
  1991年   2180篇
  1990年   2209篇
  1989年   2102篇
  1988年   2059篇
  1987年   1905篇
  1986年   1694篇
  1985年   1749篇
  1984年   1137篇
  1983年   880篇
  1982年   509篇
  1979年   1098篇
  1978年   785篇
  1977年   630篇
  1976年   651篇
  1975年   892篇
  1974年   1015篇
  1973年   1023篇
  1972年   968篇
  1971年   946篇
  1970年   829篇
  1969年   842篇
  1968年   748篇
  1967年   756篇
  1966年   592篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
151.
152.
153.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
154.
The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.  相似文献   
155.
Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 µm intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.  相似文献   
156.
157.
Comparative mineral and hormonal analyses were made on tissue culture derived truncated leaf syndrome and wild type oil palm seedlings. Mineral analysis confirmed that Boron, Zinc and chlorophyll levels were significantly lower in truncated leaf syndrome leaves than those of wild type. Hormonal analysis also revealed various cytokinin derivatives such as trans-zeatin, trans-zeatin riboside, trans-zeatin O-glucoside and trans-zeatin riboside 5??mono phosphate were significantly higher in truncated leaf syndrome leaves compared to wild type leaves. Brassinolide level was also significantly higher in truncated leaf syndrome leaves than those of the wild type. These observations suggest that the truncated leaf syndrome abnormality could be associated to high cytokinin and brassinosteroid production which affects the uptake of Boron and Zinc.  相似文献   
158.
159.
Three different deoxyribonucleoside kinases with specificities toward thymidine, deoxyguanosine, and deoxyadenosine/deoxycytidine, respectively, are identified in Bacillus subtilis. The deoxyadenosin/deoxycytidine kinase is purified 950-fold employing blue Sepharose CL-6B column chromatography. The two deoxyribonucleoside kinase activities copurify and are present in the same band after polyacrylamide gel electrophoresis. The molecular weight is determined by gel filtration to be 47,000. Cytidine, adenosine, arabinosylcytosine, and arabinosyladenine are substrates for the enzyme. The activities toward these substrates are less than 20% of the activities obtained with deoxyadenosin and deoxycytidine. The deoxycytidine and deoxyadenosine saturation curves are hyperbolic with Km values for both nucleosides around 5 microM. The maximal velocities for the two deoxyribonucleosides are nearly identical with GTP as phosphate donor. GTP is the best donor showing hyperbolic saturation curves and Km values around 150 microM depending on the deoxyribonucleoside concentration. dATP and dCTP are inhibitors when GTP is the phosphate donor. They may both act as phosphate donors themselves. A divalent metal ion is required, Mg2+ giving the highest activity. A spontaneous mutant, selected as resistant to 5-fluorodeoxycytidine, lacks both deoxycytidine and deoxyadenosine kinase activity, while it retains normal activities toward deoxyguanosine, deoxyuridine, and thymidine.  相似文献   
160.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号