首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6548篇
  免费   551篇
  国内免费   2篇
  2023年   44篇
  2022年   88篇
  2021年   174篇
  2020年   122篇
  2019年   138篇
  2018年   176篇
  2017年   173篇
  2016年   266篇
  2015年   345篇
  2014年   381篇
  2013年   427篇
  2012年   586篇
  2011年   487篇
  2010年   287篇
  2009年   273篇
  2008年   360篇
  2007年   273篇
  2006年   295篇
  2005年   271篇
  2004年   272篇
  2003年   248篇
  2002年   215篇
  2001年   84篇
  2000年   85篇
  1999年   89篇
  1998年   69篇
  1997年   57篇
  1996年   41篇
  1995年   54篇
  1994年   51篇
  1993年   48篇
  1992年   57篇
  1991年   45篇
  1990年   46篇
  1989年   36篇
  1988年   46篇
  1987年   33篇
  1986年   33篇
  1985年   46篇
  1984年   24篇
  1983年   24篇
  1982年   25篇
  1981年   18篇
  1979年   19篇
  1978年   19篇
  1974年   15篇
  1973年   16篇
  1972年   15篇
  1969年   11篇
  1968年   11篇
排序方式: 共有7101条查询结果,搜索用时 31 毫秒
151.
The rate of muscle cell fusion increases between 28 °C and 40 °C by a factor of 15 to 20. The formal activation energy of the fusion process changes abruptly at about 35 °C. This change is discussed in terms of a phase transition of the membrane lipids at 35 °C. In the presence of cholesterol or dipalmitoyllecithin the fusion rate decreases markedly. Increasing the temperature reverses the effects of cholesterol and dipalmitoyllecithin. These results are discussed in terms of interactions between membrane lipids.  相似文献   
152.
Mycopathologia - Se estudiaron los resultados comparativos de las reacciones intradérmicas a la Tuberculina, Histoplasmina y Coccidioidina, practicadas simultáneamente a 644 enfermos...  相似文献   
153.
154.
155.
The group III metabotropic glutamate receptor subtype 7 (mGlu7) is an important regulator of glutamatergic and GABAergic neurotransmission and known to mediate emotionality and male social behavior. However, a possible regulatory role in maternal behavior remains unknown to date. Adequate expression of maternal behavior is essential for successful rearing and healthy development of the young. By understanding genetic and neural mechanisms underlying this important prosocial behavior, we gain valuable insights into possible dysregulations. Using genetic ablation as well as pharmacological modulation, we studied various parameters of maternal behavior in two different mouse strains under the influence of mGlu7. We can clearly show a regulatory role of mGlu7 in maternal behavior. Naïve virgin female C57BL/6 mGlu7 knockout mice showed more often nursing postures and less spontaneous maternal aggression compared to their heterozygous and wildtype littermates. In lactating C57BL/6 wildtype mice, acute central activation of mGlu7 by the selective agonist AMN082 reduced arched back nursing and accelerated pup retrieval without affecting maternal aggression. In addition, in lactating CD1 wildtype mice the selective mGlu7 antagonist XAP044 increased both pup retrieval and maternal aggression. With respect to receptor expression levels, mGlu7 mRNA expression was higher in lactating vs virgin C57BL/6 mice in the prefrontal cortex, but not hypothalamus or hippocampus. In conclusion, these findings highlight a significant role of the mGlu7 receptor subtype in mediating maternal behavior in mice. Region‐dependent studies are warranted to further extend our knowledge on the specific function of the brain glutamate system in maternal behavior.  相似文献   
156.
157.
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e?8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.  相似文献   
158.
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.  相似文献   
159.
The United States Great Lakes Region (USGLR) is a critical geographic area for future bioenergy production. Switchgrass (Panicum virgatum) is widely considered a carbon (C)‐neutral or C‐negative bioenergy production system, but projected increases in air temperature and precipitation due to climate change might substantially alter soil organic C (SOC) dynamics and storage in soils. This study examined long‐term SOC changes in switchgrass grown on marginal land in the USGLR under current and projected climate, predicted using a process‐based model (Systems Approach to Land‐Use Sustainability) extensively calibrated with a wealth of plant and soil measurements at nine experimental sites. Simulations indicate that these soils are likely a net C sink under switchgrass (average gain 0.87 Mg C ha?1 year?1), although substantial variation in the rate of SOC accumulation was predicted (range: 0.2–1.3 Mg C ha?1 year?1). Principal component analysis revealed that the predicted intersite variability in SOC sequestration was related in part to differences in climatic characteristics, and to a lesser extent, to heterogeneous soils. Although climate change impacts on switchgrass plant growth were predicted to be small (4%–6% decrease on average), the increased soil respiration was predicted to partially negate SOC accumulations down to 70% below historical rates in the most extreme scenarios. Increasing N fertilizer rate and decreasing harvest intensity both had modest SOC sequestration benefits under projected climate, whereas introducing genotypes better adapted to the longer growing seasons was a much more effective strategy. Best‐performing adaptation scenarios were able to offset >60% of the climate change impacts, leading to SOC sequestration 0.7 Mg C ha?1 year?1 under projected climate. On average, this was 0.3 Mg C ha?1 year?1 more C sequestered than the no adaptation baseline. These findings provide crucial knowledge needed to guide policy and operational management for maximizing SOC sequestration of future bioenergy production on marginal lands in the USGLR.  相似文献   
160.
Probiotics and Antimicrobial Proteins - The use of natural products together with standard antimicrobial drugs has recently received more attention as a strategy to combat infectious diseases...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号