首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   22篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   11篇
  2010年   12篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   16篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   11篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   7篇
  1986年   1篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   4篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有228条查询结果,搜索用时 31 毫秒
81.
The phospholipids of Escherichia coli consist mainly of phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin. PG makes up ~25% of the cellular phospholipid and is essential for growth in wild-type cells. PG is synthesized on the inner surface of the inner membrane from cytidine diphosphate-diacylglycerol and glycerol 3-phosphate, generating the precursor phosphatidylglycerol-phosphate (PGP). This compound is present at low levels (~0.1% of the total lipid). Dephosphorylation of PGP to PG is catalyzed by several PGP-phosphatases. The pgpA and pgpB genes, which encode structurally distinct PGP-phosphatases, were identified previously. Double deletion mutants lacking pgpA and pgpB are viable and still make PG, suggesting the presence of additional phosphatase(s). We have identified a third PGP-phosphatase gene (previously annotated as yfhB but renamed pgpC) using an expression cloning strategy. A mutant with deletions in all three phosphatase genes is not viable unless covered by a plasmid expressing either pgpA, pgpB, or pgpC. When the triple mutant is covered with the temperature-sensitive plasmid pMAK705 expressing any one of the three pgp genes, the cells grow at 30 but not 42 °C. As growth slows at 42 °C, PGP accumulates to high levels, and the PG content declines. PgpC orthologs are present in many other bacteria.  相似文献   
82.
The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.  相似文献   
83.

Background

The immune system has paradoxical roles during cancer development and the prognostic significance of immune modulating factors is controversial. The aim of this study was to determine the expression of cyclooxygenase 2 (COX-2), transforming growth factor-beta (TGF- beta), interleukin-10 (IL-10) and their prognostic significance in breast cancers. Ki67 was included as a measure of growth fraction of tumor cells.

Methods

On immunohistochemical stained slides from 38 breast cancer patients, we performed digital video analysis of tumor cell areas and adjacent tumor stromal areas from the primary tumors and their corresponding lymph node metastases. COX-2 was recorded as graded staining intensity.

Results

The expression of TGF-beta, IL-10 and Ki67 were recorded in tumor cell areas and adjacent tumor stromal areas. In both primary tumors and metastases, the expression of COX-2 was higher in the tumor stromal areas than in the tumor cell areas (both P < 0.001). High stromal staining intensity in the primary tumors was associated with a 3.9 (95% CI 1.1-14.2) times higher risk of death compared to the low staining group (P = 0.036). The expression of TGF-beta was highest in the tumor cell areas of both primary tumors and metastases (both P < 0.001). High stromal expression of TGF-beta was associated with increased mortality. For IL-10, the stromal expression was highest in the primary tumors (P < 0.001), whereas in the metastases the expression was highest in tumor cell areas (P < 0.001). High IL-10 expression in tumor- and stromal cell areas of primary tumors predicted mortality. Ki67 was higher expressed in tumor stromal areas of the metastases, and in tumor cell areas of the primary tumors (P < 0.001). Ki67 expression in tumor cell areas and stromal areas of the metastases was independently associated with breast cancer mortality.

Conclusions

Stromal expression of COX-2, TGF-beta and Ki67 may facilitate tumor progression in breast cancer.  相似文献   
84.

Background  

There is a frequent need to obtain sets of functionally equivalent homologous proteins (FEPs) from different species. While it is usually the case that orthology implies functional equivalence, this is not always true; therefore datasets of orthologous proteins are not appropriate. The information relevant to extracting FEPs is contained in databanks such as UniProtKB/Swiss-Prot and a manual analysis of these data allow FEPs to be extracted on a one-off basis. However there has been no resource allowing the easy, automatic extraction of groups of FEPs – for example, all instances of protein C.  相似文献   
85.
UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the reversible transfer of an R-3-hydroxyacyl chain from R-3-hydroxyacyl-acyl carrier protein to the glucosamine 3-OH of UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A is required for the growth and virulence of most Gram-negative bacteria, making its biosynthetic enzymes intriguing targets for the development of new antibacterial agents. LpxA is a member of a large family of left-handed beta-helical proteins, many of which are acyl- or acetyltransferases. We now demonstrate that histidine-, lysine-, and arginine-specific reagents effectively inhibit LpxA of Escherichia coli, whereas serine- and cysteine-specific reagents do not. Using this information in conjunction with multiple sequence alignments, we constructed site-directed alanine substitution mutations of conserved histidine, lysine, and arginine residues. Many of these mutant LpxA enzymes show severely decreased specific activities under standard assay conditions. The decrease in activity corresponds to decreased k(cat)/K(m,UDP-GlcNAc) values for all the mutants. With the exception of H125A, in which no activity is seen under any assay condition, the decrease in k(cat)/K(m,UDP-GlcNAc) mainly reflects an increased K(m,UDP-GlcNAc). His(125) of E. coli LpxA may therefore function as a catalytic residue, possibly as a general base. LpxA does not catalyze measurable UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc hydrolysis or UDP-GlcNAc/UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc exchange, arguing against a ping-pong mechanism with an acyl-enzyme intermediate.  相似文献   
86.
Diglyceride kinase mutants of Escherichia coli contain about 50- to 100-fold more 1,2-diglyceride than wild type cells. We now report that monoglyceride and triglyceride also accumulate in these strains. In mutant RZ60 (dgk-6) these compounds represent about 1 and 0.2%, respectively, of the total lipid fraction, while diglyceride represents 5-8% under most conditions. Monoglyceride accumulates predominantly in the outer membrane, while triglyceride builds up together with diglyceride in the cytoplasmic membrane. Under typical growth conditions about two-thirds of the diglyceride in E. coli arises in conjunction with synthesis of the membrane-derived oligosaccharides (Raetz, C.R.H., and Newman, K.F. (1979) J. Bacteriol. 137, 860-868). Inhibition of membrane-derived oligosaccharides (MDO) synthesis also curtails the accumulation of monoglyceride and triglyceride. However, there appears to be at least one other MDO-independent source of diglyceride and related metabolites. Since MDO synthesis is suppressed by high osmolarity (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. U.S. A. 79, 1092-1095), we have examined the effects of osmolarity on diglyceride accumulation in RZ60 (dgk-6). As expected, if MDO synthesis and diglyceride formation are coupled, the diglyceride level in RZ60 is higher at low osmolarity, while at high osmolarity the level of diglyceride is reduced to that observed in double mutants defective both in MDO synthesis and diglyceride kinase. Since dgk mutants do not grow at very low osmolarity, we have isolated several spontaneous phenotypic revertants that do. One class regains diglyceride kinase and has low diglyceride levels under all conditions. The other class remains defective in diglyceride kinase but tolerates higher diglyceride levels which amount to 13% of the total lipid during maximal induction of MDO synthesis at low osmolarity.  相似文献   
87.
We have determined the complete structure of a glycolipid (designated lipid X) previously found to accumulate in certain Escherichia coli mutants defective in phosphatidylglycerol synthesis (Nishijima, M., and Raetz, C.R.H. (1979) J. Biol. Chem. 254, 7837-7844). Based on fast atom bombardment mass spectrometry and proton nuclear magnetic resonance studies, this substance is an acylated metabolite of glucosamine 1-phosphate. Lipid X of E. coli has a Mr = 711.87 as the free acid (C34H66NO12P) and contains two beta-hydroxymyristate moieties, one attached as an amide at the 2 position and the other as an ester at the 3 position of the sugar. It has free hydroxyl groups at the 4 and 6 positions, and the anomeric configuration is alpha. The structure of lipid X from E. coli closely resembles the reducing end subunit of lipid A, and it might represent a very early precursor in the biosynthesis of lipid A. To our knowledge, fatty acyl derivatives of glucosamine 1-phosphate have not been reported previously.  相似文献   
88.
Escherichia coli mutants defective in the pgsB gene are phosphatidylglycerol-deficient in certain genetic settings and accumulate novel, glucosamine-derived phospholipids (Nishijima, M., and Raetz, C. R. H. (1979) J. Biol. Chem. 254, 7837-7844). The simplest of these compounds is 2,3-diacylglucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) ("lipid X" of E. coli), in which beta-hydroxymyristoyl moieties are the sole fatty acid substituents (Takayama, K., Qureshi, N., Mascagni, P., Nashed, M. A., Anderson, L., and Raetz, C. R. H. (1983) J. Biol. Chem. 258, 7379-7385). We now report a sensitive radiochemical method for detection of 2,3-diacyl-GlcN-1-P in wild type E. coli and demonstrate that there are about 4000 molecules/cell (0.02% of the total CHCl3-soluble phosphorus). In mutants bearing the pgsB1 lesion, the levels are 100- to 300-fold higher. In addition, we have discovered a novel liponucleotide, UDP-2,3-diacyl-GlcN, that also accumulates in conjunction with the pgsb1 mutation. This material represents 0.005% of the wild type phospholipid and accumulates 50- to 100-fold in the mutant. The identification of UDP-2,3-diacyl-GlcN in E. coli is based on: 1) migration of a minor 32P-labeled lipid from wild type and mutant cells with a UDP-2,3-diacyl-GlCn standard during two-dimensional thin layer chromatography; 2) susceptibility of this 32P-labeled material to cleavage by a liponucleotide-specific pyrophosphatase; and 3) chromatographic identification of [32P]UMP and [32P]2,3-diacyl-GlcN-1-P (lipid X) as the sole products of the enzymatic degradation. As shown in the accompanying article, this novel nucleotide is crucial for biosynthesis of lipid A disaccharides in extracts of E. coli and Salmonella typhimurium.  相似文献   
89.
We have investigated the aggregation behaviour of lipid IVA (a bioactive precursor of lipid A and the lipid anchor of lipopolysaccharide) in aqueous solutions in the physiological pH range using dynamic light scattering, nuclear magnetic resonance, fluorescence, surface pressure, electron microscopy and force field simulation studies. The sonication of lipid IVA in PBS, Tris and Hepes produces vesicles which are stable in the concentration range of 10(-3) - 10(-7) M, possibly even at lower concentrations. The vesicle size is not sensitive to the nature of the buffer, only to the pH and to some extent to the ionic strength. The long time stability of the small unilamellar vesicles as well as the structureless 1H-NMR spectra might be attributed to a rigid surface structure. This structure is also supported by the simulation studies. We have tentatively proposed a coexistence of micelles and/or other aggregates with the bilayered vesicles at higher lipid concentrations in order to explain some of the experimental observations.  相似文献   
90.
Gram-negative bacterial septicemia is a common clinical syndrome resulting, in part, from the activation of phagocytic leukocytes by LPS. By using flow cytometry, we have characterized LPS-induced expression of the beta 2 integrin CD11b/CD18. After exposure to Salmonella minnesota R595 LPS, expression of neutrophil CD11b/CD18 is rapidly upregulated, beginning within 5 min and achieving a peak fluorescence (typically two- to threefold over base line) by 30 min. The increase in CD11b/CD18 expression was similar in kinetics and magnitude to that produced by FMLP, PMA, and human rTNF-alpha. Concentrations of LPS necessary to stimulate a response were as low as 1 ng/ml of R595 LPS; a maximal response was observed between 30 and 100 ng/ml. The upregulation of CD11b/CD18 due to LPS was not interrupted by protein synthesis inhibitors. A group of glucosamine disaccharide lipid A-like molecules: Rhodobacter sphaeroides lipid A, lipid IVA, KDO2IVA, and deacylated LPS were able to block the stimulatory effect of LPS. This inhibition was specific for the actions of LPS as stimulation of polymorphonuclear leukocytes (PMN) by FMLP, human rTNF alpha, PMA, and rewarming were not altered by the disaccharide inhibitors. PMN which were exposed to the specific disaccharide LPS antagonists and then washed, were refractory to stimulation by LPS. The monosaccharide lipid A precursor lipid X also blocked stimulation of neutrophils by LPS, although with a 100-fold reduction in potency. Unlike the disaccharide inhibitors, PMN exposed to lipid X were still responsive to LPS stimulation after washing. The PMN response to LPS was less sensitive in the absence of serum, although upregulation of CD11b/CD18 could still be seen using higher concentrations of LPS. Monoclonal antibody directed against CD14 (clone 3C10), also specifically inhibited LPS induced PMN CD11b/CD18 expression both in the presence and absence of serum. These findings support the hypothesis that LPS stimulates neutrophils by interacting with specific cellular receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号