全文获取类型
收费全文 | 206篇 |
免费 | 22篇 |
专业分类
228篇 |
出版年
2018年 | 1篇 |
2016年 | 1篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 5篇 |
2012年 | 7篇 |
2011年 | 11篇 |
2010年 | 12篇 |
2009年 | 5篇 |
2008年 | 7篇 |
2007年 | 7篇 |
2006年 | 9篇 |
2005年 | 16篇 |
2004年 | 8篇 |
2003年 | 7篇 |
2002年 | 9篇 |
2001年 | 8篇 |
2000年 | 8篇 |
1999年 | 11篇 |
1998年 | 2篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 5篇 |
1991年 | 9篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 8篇 |
1987年 | 7篇 |
1986年 | 1篇 |
1985年 | 8篇 |
1984年 | 3篇 |
1983年 | 8篇 |
1982年 | 4篇 |
1981年 | 5篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
排序方式: 共有228条查询结果,搜索用时 11 毫秒
181.
Cardiolipin Accumulation in the Inner and Outer Membranes of Escherichia coli Mutants Defective in Phosphatidylserine Synthetase 下载免费PDF全文
Christian R. H. Raetz Gina D. Kantor Masahiro Nishijima Karl F. Newman 《Journal of bacteriology》1979,139(2):544-551
Mutants of Escherichia coli defective in phosphatidylserine synthetase (pss) make less phosphatidylethanolamine than normal cells, and they are temperature sensitive for growth. We have isolated a new mutant, designated RA2021, which is better than previously available strains in that the residual phosphatidylethanolamine level approaches 25% after 4 h at 42 degrees C. The total amount of phospholipid normalized to the density of the culture is about the same in RA2021 (pss-21) as in the isogenic wild-type RA2000 (pss(+)). Consequently, there is a net accumulation of polyglycerophosphatides in the mutant, particularly of cardiolipin. The addition of 10 to 20 mM MgCl(2) to a culture of RA2021 prolongs growth under nonpermissive conditions and prevents loss of cell viability, but it does not eliminate the temperature-sensitive phenotype. Divalent cations, like Mg(2+), do not correct the phospholipid composition of the mutant, but may act indirectly by balancing the negative charges of phosphatidylglycerol and cardiolipin. To determine the effects of the pss mutation on membrane composition, we have examined the subcellular distribution of the polyglycerophosphatides that accumulate in these strains. All of the excess anionic lipids of RA2021 are associated with the envelope fraction and are distributed equally between the inner and outer membranes. The protein compositions of the isolated membranes do not differ significantly in the mutant and wild type. The fatty acid composition of RA2021 is almost the same as wild type at 30 degrees C, but there is more palmitic and cyclopropane fatty acid at 42 degrees C. These results demonstrate that the modification of the polar lipid composition observed in pss mutants affects both membranes and that cardiolipin, which is not ordinarily present in large quantities, can accumulate in the outer membrane when it is overproduced by the cell. The altered polar headgroup composition of the outer membrane in pss mutants may account, in part, for their hypersensitivity to the aminoglycoside antibiotics. 相似文献
182.
Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria 总被引:1,自引:0,他引:1 下载免费PDF全文
Regulated covalent modifications of lipid A are implicated in virulence of pathogenic Gram-negative bacteria. The Salmonella typhimurium PhoP/PhoQ-activated gene pagP is required both for biosynthesis of hepta-acylated lipid A species containing palmitate and for resistance to cationic anti-microbial peptides. Palmitoylated lipid A can also function as an endotoxin antagonist. We now show that pagP and its Escherichia coli homolog (crcA) encode an unusual enzyme of lipid A biosynthesis localized in the outer membrane. PagP transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A (or its precursors). PagP bearing a C-terminal His(6)-tag accumulated in outer membranes during overproduction, was purified with full activity and was shown by cross-linking to behave as a homodimer. PagP is the first example of an outer membrane enzyme involved in lipid A biosynthesis. Additional pagP homologs are encoded in the genomes of YERSINIA: and BORDETELLA: species. PagP may provide an adaptive response toward both Mg(2+) limitation and host innate immune defenses. 相似文献
183.
Tran AX Karbarz MJ Wang X Raetz CR McGrath SC Cotter RJ Trent MS 《The Journal of biological chemistry》2004,279(53):55780-55791
Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps. 相似文献
184.
David A. Six Bliss Lambert Christian R.H. Raetz William T. Doerrler 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(7):989-993
We previously described enrichment of conditional Escherichia coli msbA mutants defective in lipopolysaccharide export using Ludox density gradients (Doerrler WT (2007) Appl Environ Microbiol 73; 7992–7996). Here, we use this approach to isolate and characterize temperature-sensitive lpxL mutants. LpxL is a late acyltransferase of the pathway of lipid A biosynthesis (The Raetz Pathway). Sequencing the lpxL gene from the mutants revealed the presence of both missense and nonsense mutations. The missense mutations include several in close proximity to the enzyme's active site or conserved residues (E137K, H132Y, G168D). These data demonstrate that Ludox gradients can be used to efficiently isolate conditional E. coli mutants with defects in lipopolysaccharide biosynthesis and provide insight into the enzymatic mechanism of LpxL. 相似文献
185.
Zimmerman PA; Katholi CR; Wooten MC; Lang-Unnasch N; Unnasch TR 《Molecular biology and evolution》1994,11(3):384-392
Polymerase chain reaction (PCR) products were characterized for a repeated
sequence family (designated "O-150") of the human filarial parasite
Onchocerca volvulus. In phylogenetic inferences, the O-150 sequences
clustered into closely related groups, suggesting that concerted evolution
maintains sequence homology in this family. Using a novel mathematical
model based on a nested application of an analysis of variance, we
demonstrated that African rainforest and savannah strain parasite
populations are significantly different. In contrast, parasites collected
in the New World are indistinguishable from African savannah strains of O.
volvulus. This finding supports the hypothesis that onchocerciasis was
recently introduced into the New World, possibly as a result of the slave
trade.
相似文献
186.
Since gastrin and its related peptides are secreted by a minority population of widely dispersed cells in mamamalian tissues it has, in the past, been difficult to study the subcellular aspects of their secretion. From published reports (1, 2) it seemed possible that a satisfactory system for such studies might be provided by the skin of certain amphibians such as Xenopus laevis since in these tissues high concentrations of peptides such as caerulein exist, and there is some indication (3) that this, or a similar gastrin-like peptide, may be a dermal gland secretory product. We have therefore explored this possibility by studying the structure, secretory process, and secretory product of the most prominent non mucous type of gland in the skin of X. laevis. These studies clearly demonstrate that most, if not all, of the caerulein in which the skin is contained in secretion granules within the dermal glands and that its release can be specifically evoked by adrenergic stimulation. The release process by a holocrine mechanism expels all of the stored secretion onto the skin surface and thus for biosynthetic studies it should now be possible to synchronize the processes which lead to the replenishment of the peptide. 相似文献
187.
Abstract: Decapod crustacean material collected recently from the lower Callovian (Middle Jurassic) in Maine‐et‐Loire (north‐west France) comprises two new species of prosopid and one new species of tanidromitid crabs, of the genera Nodoprosopon and Tanidromites, respectively. Also represented in this faunule is a probable paguroid anomuran, in the form of isolated chelae here assigned to the genus Orhomalus, as well as appendicular remains of unknown affinity; some of the latter might belong to prosopid crabs. These anomurans and brachyurans co‐occur with a diverse benthic fauna in limestones with abundant iron ooids; their main interest lies in the fact that they add valuable data to the rather poor record of Middle Jurassic decapod crustaceans. 相似文献
188.
Kanjilal-Kolar S Basu SS Kanipes MI Guan Z Garrett TA Raetz CR 《The Journal of biological chemistry》2006,281(18):12865-12878
The lipid A and core regions of the lipopolysaccharide in Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, are strikingly different from those of Escherichia coli. In R. leguminosarum lipopolysaccharide, the inner core is modified with three galacturonic acid (GalA) moieties, two on the distal 3-deoxy-D-manno-octulosonic acid (Kdo) unit and one on the mannose residue. Here we describe the expression cloning of three novel GalA transferases from a 22-kb R. leguminosarum genomic DNA insert-containing cosmid (pSGAT). Two of these enzymes modify the substrate, Kdo2-[4'-(32)P]lipid IV(A) and its 1-dephosphorylated derivative on the distal Kdo residue, as indicated by mild acid hydrolysis. The third enzyme modifies the mannose unit of the substrate mannosyl-Kdo2-1-dephospho-[4'-(32)P]lipid IV(A). Sequencing of a 7-kb subclone derived from pSGAT revealed three putative membrane-bound glycosyltransferases, now designated RgtA, RgtB, and RgtC. Transfer by tri-parental mating of these genes into Sinorhizobium meliloti 1021, a strain that lacks these particular GalA residues, results in the heterologous expression of the GalA transferase activities seen in membranes of cells expressing pSGAT. Reconstitution experiments with the individual genes demonstrated that the activity of RgtA precedes and is necessary for the subsequent activity of RgtB, which is followed by the activity of RgtC. Electrospray ionization-tandem mass spectrometry and gas-liquid chromatography of the product generated in vitro by RgtA confirmed the presence of a GalA moiety. No in vitro activity was detected when RgtA was expressed in Escherichia coli unless Rhizobiaceae membranes were also included. 相似文献
189.
Kong Q Six DA Roland KL Liu Q Gu L Reynolds CM Wang X Raetz CR Curtiss R 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(1):412-423
The development of safe live, attenuated Salmonella vaccines may be facilitated by detoxification of its LPS. Recent characterization of the lipid A 1-phosphatase, LpxE, from Francisella tularensis allowed us to construct recombinant, plasmid-free strains of Salmonella that produce predominantly 1-dephosphorylated lipid A, similar to the adjuvant approved for human use. Complete lipid A 1-dephosphorylation was also confirmed under low pH, low Mg(2+) culture conditions, which induce lipid A modifications. LpxE expression in Salmonella reduced its virulence in mice by five orders of magnitude. Moreover, mice inoculated with these detoxified strains were protected against wild-type challenge. Candidate Salmonella vaccine strains synthesizing pneumococcal surface protein A (PspA) were also confirmed to possess nearly complete lipid A 1-dephosphorylation. After inoculation by the LpxE/PspA strains, mice produced robust levels of anti-PspA Abs and showed significantly improved survival against challenge with wild-type Streptococcus pneumoniae WU2 compared with vector-only-immunized mice, validating Salmonella synthesizing 1-dephosphorylated lipid A as an Ag-delivery system. 相似文献
190.
Reynolds CM Ribeiro AA McGrath SC Cotter RJ Raetz CR Trent MS 《The Journal of biological chemistry》2006,281(31):21974-21987
The Salmonella and related bacteria modify the structure of the lipid A portion of their lipopolysaccharide in response to environmental stimuli. Some lipid A modifications are required for virulence and resistance to cationic antimicrobial peptides. We now demonstrate that membranes of Salmonella typhimurium contain a novel hydrolase that removes the 3'-acyloxyacyl residue of lipid A in the presence of 5 mM Ca2+. We have identified the gene encoding the S. typhimurium lipid A 3'-O-deacylase, designated lpxR, by screening an ordered S. typhimurium genomic DNA library, harbored in Escherichia coli K-12, for expression of Ca2+-dependent 3'-O-deacylase activity in membranes. LpxR is synthesized with an N-terminal type I signal peptide and is localized to the outer membrane. Mass spectrometry was used to confirm the position of lipid A deacylation in vitro and the release of the intact 3'-acyloxyacyl group. Heterologous expression of lpxR in the E. coli K-12 W3110, which lacks lpxR, resulted in production of significant amounts of 3'-O-deacylated lipid A in growing cultures. Orthologues of LpxR are present in the genomes of E. coli O157:H7, Yersinia enterocolitica, Helicobacter pylori, and Vibrio cholerae. The function of LpxR is unknown, but it could play a role in pathogenesis because it might modulate the cytokine response of an infected animal. 相似文献