首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   22篇
  228篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   11篇
  2010年   12篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   16篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   11篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   7篇
  1986年   1篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   4篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
161.
Temperature-sensitive mutants of Salmonella typhimurium that are defective in the biosynthesis of 3-deoxy-D-manno-octulosonate are known to accumulate disaccharide precursor(s) of lipid A at 42 degrees C (Rick, P. D., Fung, L. W.-M., Ho, C., and Osborn, M. J. (1977) J. Biol. Chem. 252, 4904-4912). We have devised new methods for purifying this material by chromatography on DEAE-cellulose and silicic acid columns and have fractionated it into eight related anionic components that fall into four sets, as judged by their charge. Substances IA and IB have an apparent net charge of -1, IIA and IIB of -2, IIIA and IIIB of -3, and IVA and IVB of -4. Negative ion fast atom bombardment mass spectrometry reveals that the simplest component is IVA [( M - H]- at m/z 1404). Compound IVA is also the most abundant, representing 30-50% of the accumulated lipids after 3 h at 42 degrees C. Structural studies of IVA, including NMR spectroscopy described in the accompanying paper, reveal that it consists of O-(2-amino-2-deoxy-beta-D-glucopyranosyl)-(1----6)-2-amino-2-deoxy-alpha - D-glucose, acylated at positions 2, 3, 2', and 3' with beta-hydroxymyristoyl moieties and bearing phosphate groups at positions 1 and 4'. Compound IIIA ([M - H]- at m/z 1527) contains an additional phosphoethanolamine residue, while IIA ([M - H]- m/z 1535) bears an aminodeoxypentose substituent, presumably 4-amino-4-deoxy-L-arabinose. Compound IA ([M - H]- at m/z 1658) bears both a phosphoethanolamine and an aminodeoxypentose. The compounds of the less abundant B series are further derivatized with an ester-linked palmitoyl moiety. Our results demonstrate that these precursors are far more heterogeneous than previously suspected.  相似文献   
162.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   
163.
The min 4 region of the Escherichia coli genome contains genes (lpxA and lpxB) that encode proteins involved in lipid A biosynthesis. We have determined the sequence of 1,350 base pairs of DNA upstream of the lpxB gene. This fragment of DNA contains the complete coding sequence for the 28.0-kilodalton lpxA gene product and an upstream open reading frame capable of encoding a 17-kilodalton protein (ORF17). In addition there appears to be an additional open reading frame (ORF?) immediately upstream of ORF17. The initiation codon for lpxA is a GUG codon, and the start codon for ORF17 is apparently a UUG codon. The start and stop codons overlap between ORF? and ORF17, ORF17 and lpxA, and lpxA and lpxB. This overlap is suggestive of translational coupling and argues that the genes are cotranscribed. Crowell et al. (D.N. Crowell, W.S. Reznikoff, and C.R.H. Raetz, J. Bacteriol. 169:5727-5734, 1987) and Tomasiewicz and McHenry (H.G. Tomasiewicz and C.S. McHenry, J. Bacteriol. 169:5735-5744, 1987) have demonstrated that there are three similarly overlapping coding regions downstream of lpxB including dnaE, suggesting the existence of a complex operon of at least seven genes: 5'-ORF?-ORF17-lpxA-lpxB-ORF23-dnaE-ORF37-3 '.  相似文献   
164.
Chinese hamster ovary cells (CHO-K1) photosensitized with 12-(1'-pyrene)dodecanoic acid (P12) are killed when exposed to long wavelength ultraviolet (UV) light (greater than 300 nm). Mutants deficient in plasmalogen biosynthesis are hypersensitive to this treatment. We now demonstrate that plasmenylethanolamine is rapidly and preferentially destroyed when CHO-K1 cells, photosensitized either with P12 or merocyanine 540, are irradiated with light of the appropriate wavelength. Using [2-14C]ethanolamine, [1-14C]hexadecanol, or [U-14C]hexadecanol to follow the turnover of plasmenylethanolamine, we show that 2-monoacylglycerophosphoethanolamine, formic acid, and pentadecanal are formed during P12/UV treatment of CHO-K1 cells, but not of mutant cells deficient in plasmalogen synthesis. The decomposition of plasmenylethanolamine is O2-dependent, is enhanced in D2O, and is reduced in the presence of sodium azide. The process may be explained, in part, by the cycloaddition of singlet oxygen to the vinyl ether linkage of plasmenylethanolamine, generating a dioxetane intermediate that would be expected to decompose under physiological conditions to the observed products. An additional possibility is the formation of an allylic hydroperoxide at the 1'-carbon of the alkyl moiety by an "ene" reaction of singlet oxygen, or by radical-mediated oxidation, followed by metabolism or chemical decomposition of the hydroperoxide. Given the P12/UV hypersensitivity of plasmalogen-deficient mutants, we suggest that plasmalogens might protect animal cell membranes from singlet oxygen and/or radical-initiated oxidation by functioning as scavengers and decomposing to products that can be reutilized.  相似文献   
165.
Crystals of UDP-N-acetylglucosamine O-acyltransferase (lpxA) fromEscherichia coli have been obtained from solutions of sodium/potassium phosphate and dimethylsulfoxide. These crystals belong to the cubic space group P213 (a = 99.0 Å), diffract X-raysto approximately 2.5 Å resolution and contain one subunit of the enzyme in the asymmetric unit. © 1995 Wiley-Liss, Inc.  相似文献   
166.
167.
A conditionally lethal mutant of Escherichia coli lacking phosphatidylglycerol in vivo at 42 degrees C has been previously isolated by two-stage mutagenesis (M. Nishijima and C. R. H. Raetz, J. Biol. Chem. 254:7837-7844, 1979). In the first step (designated pgsA444) the phosphatidylglycerophosphate synthetase is partially inactivated, but the resulting strain continues to make about two-thirds of the normal level of phosphatidylglycerol and is not temperature sensitive. The second lesion, termed pgsB1, causes temperature-sensitive growth and phosphatidylglycerol synthesis in strains harboring pgsA444. The pgsA locus appears to be the structural gene for the synthetase and maps near min 42. In the present study we mapped the pgsB1 mutation and characterized its interaction with pgsA444 by genetic and biochemical methods. Unexpectedly, pgsB1 was not a second lesion in the pgsA structural gene, but rather mapped at a distinct site near minute 4. P1 vir-mediated contransduction suggested the gene order pantonA-dapD-pgsB-dnaE (clockwise). Independent evidence for the genetic mapping was provided by the identification of two hybrid ColE1 plasmids (pLC26-43 and pLC34-20. L. Clarke and J. Carbon, Cell 9:91-99, 1976) which both carry pgsB+ and dnaE+. Introduction of either the pgsA+ or the pgsB+ gene (via episomes, hybrid plasmids or P1 vir transduction) suppressed the temperature sensitivity of the double mutant (pgsA444 pgsB1) and restored normal levels of phosphatidylglycerol at 42 degrees C. In addition, strains with the pgsA+ pgsB1 genotype produced a novel lipid (X) at all temperatures, whereas the double mutant (pgsA444 pgsB1) contained two unusual lipids (X and Y) after 3 h at 42 degrees C. Both X and Y are precursors of lipopolysaccharide, and introduction of pgsB+ into the double mutant caused the disappearance of X and Y. Although the biochemical basis of the pgsB1 lesion is unknown, its existence suggests a previously unrecognized link between lipopolysaccharide and phosphatidylglycerol syntheses in E. coli.  相似文献   
168.
An in situ autoradiographic assay for CDP-ethanolamine:1,2-sn-diacylglycerol ethanolamine phosphotransferase (EC 2.7.8.1) activity in Chinese hamster ovary cells was developed and used to screen approximately 10,000 individual mutagen-treated colonies attached to filter paper (Esko, J. D., and Raetz, C. R. H. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1190-1193). A variant (strain 40.11) was isolated in which the ethanolamine phosphotransferase specific activity in vitro was 6-10-fold less than in the parent, but the level of CDP-choline:1,2-sn-diacylglycerol choline phosphotransferase (EC 2.7.8.2) activity was normal. In extracts, the mutant was also defective in the synthesis of ethanolamine plasmalogen. In vivo, the short term kinetics of labeling with [32P]phosphate or [14C]ethanolamine was correspondingly altered. However, the long tem growth rate and steady state phospholipid compositions of the mutant and parent were quite similar. These results show that the ethanolamine and choline phosphotransferases of Chinese hamster ovary cells are distinct as judged by genetic criteria, while the biosynthesis of phosphatidylethanolamine and its plasmalogen share common enzymatic component(s).  相似文献   
169.
Using localized mutagenesis of whole cells, we have isolated a temperature-sensitive UDP-N-acetylglucosamine acyltransferase mutant of Escherichia coli that loses all detectable acyltransferase activity and quickly dies after a shift from 30 to 42 degrees C. Acyltransferase activity and temperature resistance are restored by transforming the mutant with a hybrid plasmid containing the E. coli gene for UDP-GlcNAc acyltransferase (lpxA). In addition, a new assay has been developed for quantitating the amount of lipid A (the active component of endotoxin) in E. coli and related Gram-negative strains. Cells are labeled with 32Pi and extracted with chloroform/methanol/water (1:2:0.8, v/v) to remove glycerophospholipids. The residue is then hydrolyzed with 0.2 M HCl to liberate the "monophosphoryl" lipid A degradation products (Qureshi, N., Cotter, R. J. and Takayama, K. (1986) J. Microbiol. Methods 5, 65-77), each of which bears a single phosphate residue at position 4'. The amount of lipid A is normalized to the total amount of labeled glycerophospholipid present in the cells. The steady state ratio of lipid A to glycerophospholipid in wild-type cells is approximately 0.12. The lipid A content of the acyltransferase mutant is reduced 2-3-fold, and the rate of lipid A synthesis is reduced 10-fold when compared to wild-type after 60 min at 42 degrees C. These results provide physiological evidence that UDP-N-acetylglucosamine acyltransferase is the major committed step for lipid A biosynthesis in E. coli and that lipid A is an essential molecule.  相似文献   
170.
Neuromelanin (NM) isolated from the substantia nigra of the human brain is found to contain a series of dolichoic acids (dol-CA) containing 14-20 isoprene units. This is the first observation of dol-CA in a natural system. Using internally spiked nor-dolichol and nor-dolichoic acid standards, the concentrations of dolichol (dol) and dol-CA present in NM were determined. Remarkably, dol was only four times as abundant as dol-CA in NM. The distribution of dol-CA chains lengths in NM also differed from that of dol, suggesting that the enzyme(s) responsible for the conversion of dol to dol-CA prefer a dolichol substrate containing 19 isoprene units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号