首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   22篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   11篇
  2010年   12篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   16篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   11篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   7篇
  1986年   1篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   4篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有228条查询结果,搜索用时 31 毫秒
121.
An acyltransferase induced by cold shock in Escherichia coli, designated LpxP, incorporates a palmitoleoyl moiety into nascent lipid A in place of the secondary laurate chain normally added by LpxL(HtrB) (Carty, S. M., Sreekumar, K. R., and Raetz, C. R. H. (1999) J. Biol. Chem. 274, 9677-9685). To determine whether the palmitoleoyl residue alters the properties of the outer membrane and imparts physiological benefits at low growth temperatures, we constructed a chromosomal insertion mutation in lpxP, the structural gene for the transferase. Membranes from the lpxP mutant MKV11 grown at 12 degrees C lacked the cold-induced palmitoleoyltransferase present in membranes of cold-shocked wild type cells but retained normal levels of the constitutive lauroyltransferase encoded by lpxL. When examined by mass spectrometry, about two-thirds of the lipid A molecules isolated from wild type E. coli grown at 12 degrees C contained palmitoleate in place of laurate, whereas the lipid A of cold-adapted MKV11 contained only laurate in amounts comparable with those seen in wild type cells grown at 30 degrees C or above. To probe the integrity of the outer membrane, MKV11 and an isogenic wild type strain were grown at 30 or 12 degrees C and then tested for their susceptibility to antibiotics. MKV11 exhibited a 10-fold increase in sensitivity to rifampicin and vancomycin at 12 degrees C compared with wild type cells but showed identical resistance when grown at 30 degrees C. We suggest that the palmitoleoyltransferase may confer a selective advantage upon E. coli cells growing at lower temperatures by making the outer membrane a more effective barrier to harmful chemicals.  相似文献   
122.
All possible combinations of insertion mutations in the three genes encoding the acyl carrier protein-dependent late acyltransferases of lipid A biosynthesis, designated lpxL(htrB), lpxM(msbB), and lpxP, were generated in Escherichia coli K12 W3110. Mutants defective in lpxM synthesize penta-acylated lipid A molecules and grow normally. Strains lacking lpxP fail to incorporate palmitoleate into their lipid A at 12 degrees C but make normal amounts of hexa-acylated lipid A and are viable. Although lpxL mutants and lpxL lpxM double mutants grow slowly on minimal medium at all temperatures, they do not grow on nutrient broth above 32 degrees C. Such mutants retain the ability to synthesize some penta- and hexa-acylated lipid A molecules because of limited induction of lpxP at 30 degrees C but not above 32 degrees C. MKV15, an E. coli lpxL lpxM lpxP triple mutant, likewise grows slowly on minimal medium at all temperatures but not on nutrient broth at any temperature. MKV15 synthesizes a lipid A molecule containing only the four primary (R)-3-hydroxymyristoyl chains. The outer membrane localization and content of lipid A are nearly normal in MKV15, as is the glycerophospholipid and membrane protein composition. However, the rate at which the tetra-acylated lipid A of MKV15 is exported to the outer membrane is reduced compared with wild type. The integrity of the outer membrane of MKV15 is compromised, as judged by antibiotic hypersensitivity, and MKV15 undergoes lysis following centrifugation. MKV15 may prove useful as a host strain for expressing late acyltransferase genes from other Gram-negative bacteria, facilitating the re-engineering of lipid A structure in living cells and the design of novel vaccines.  相似文献   
123.
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to approximately 95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent K(m) of 878 microm and a V(max) of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mm Mg(2+). Preincubation of MsbA-containing liposomes with 3-deoxy-d-mannooctulosonic acid (Kdo)(2)-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 microm Kdo(2)-lipid A. Addition of Kdo(2)-lipid A increased the V(max) to 154 nmol/min/mg and decreased the K(m) to 379 microm. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IV(A). MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30 degrees C but was significantly reduced at 42 degrees C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator.  相似文献   
124.
UDP-2,3-diacylglucosamine hydrolase is believed to catalyze the fourth step of lipid A biosynthesis in Escherichia coli. This reaction involves pyrophosphate bond hydrolysis of the precursor UDP-2,3-diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate and UMP. To identify the gene encoding this hydrolase, E. coli lysates generated with individual lambda clones of the ordered Kohara library were assayed for overexpression of the enzyme. The sequence of lambda clone 157[6E7], promoting overproduction of hydrolase activity, was examined for genes encoding hypothetical proteins of unknown function. The amino acid sequence of one such open reading frame, ybbF, is 50.5% identical to a Haemophilus influenzae hypothetical protein and is also conserved in most other Gram-negative organisms, but is absent in Gram-positives. Cell extracts prepared from cells overexpressing ybbF behind the T7lac promoter have approximately 540 times more hydrolase activity than cells with vector alone. YbbF was purified to approximately 60% homogeneity, and its catalytic properties were examined. Enzymatic activity is maximal at pH 8 and is inhibited by 0.01% (or more) Triton X-100. The apparent K(m) for UDP-2,3-diacylglucosamine is 62 microm. YbbF requires a diacylated substrate and does not cleave CDP-diacylglycerol. (31)P NMR studies of the UMP product generated from UDP-2,3-diacylglucosamine in the presence of 40% H(2)180 show that the enzyme attacks the alpha-phosphate group of the UDP moiety. Because ybbF encodes the specific UDP-2,3-diacylglucosamine hydrolase involved in lipid A biosynthesis, it is now designated lpxH.  相似文献   
125.
The lpcC gene of Rhizobium leguminosarum and the lpsB gene of Sinorhizobium meliloti encode protein orthologs that are 58% identical over their entire lengths of about 350 amino acid residues. LpcC and LpsB are required for symbiosis with pea and Medicago plants, respectively. S. meliloti lpsB complements a mutant of R. leguminosarum defective in lpcC, but the converse does not occur. LpcC encodes a highly selective mannosyl transferase that utilizes GDP-mannose to glycosylate the inner 3-deoxy-D-manno-octulosonic acid (Kdo) residue of the lipopolysaccharide precursor Kdo(2)-lipid IV(A). We now demonstrate that LpsB can also efficiently mannosylate the same acceptor substrate as does LpcC. Unexpectedly, however, the sugar nucleotide selectivity of LpsB is greatly relaxed compared with that of LpcC. Membranes of the wild-type S. meliloti strain 2011 catalyze the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A) at comparable rates using a diverse set of sugar nucleotides, including GDP-mannose, ADP-mannose, UDP-glucose, and ADP-glucose. This complex pattern of glycosylation is due entirely to LpsB, since membranes of the S. meliloti lpsB mutant 6963 do not glycosylate Kdo(2)-[4'-(32)P]lipid IV(A) in the presence of any of these sugar nucleotides. Expression of lpsB in E. coli using a T7lac promoter-driven construct results in the appearance of similar multiple glycosyl transferase activities seen in S. meliloti 2011 membranes. Constructs expressing lpcC display only mannosyl transferase activity. We conclude that LpsB, despite its high degree of similarity to LpcC, is a much more versatile glycosyltransferase, probably accounting for the inability of lpcC to complement S. meliloti lpsB mutants. Our findings have important implications for the regulation of core glycosylation in S. meliloti and other bacteria containing LpcC orthologs.  相似文献   
126.
The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.  相似文献   
127.
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the second step in the biosynthesis of lipid A, a unique amphiphilic molecule found in the outer membranes of virtually all Gram-negative bacteria. Since lipid A biosynthesis is required for bacterial growth, inhibitors of LpxC have potential utility as antibiotics. The enzymes of lipid A biosynthesis, including LpxC, are encoded by single copy genes in all sequenced Gram-negative genomes. We have now cloned, overexpressed, and purified LpxC from the hyperthermophile Aquifex aeolicus. This heat-stable LpxC variant (the most divergent of all known LpxCs) displays 32% identity and 51% similarity over 277 amino acid residues out of the 305 in Escherichia coli LpxC. Although A. aeolicus LpxC deacetylates the substrate UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine at a rate comparable with E. coli LpxC, a phenyloxazoline-based hydroxamate that inhibits E. coli LpxC with K(i) of approximately 50 nM (Onishi, H. R., Pelak, B. A., Gerckens, L. S., Silver, L. L., Kahan, F. M., Chen, M. H., Patchett, A. A., Galloway, S. M., Hyland, S. A., Anderson, M. S., and Raetz, C. R. H. (1996) Science 274, 980-982) does not inhibit A. aeolicus LpxC. To determine whether or not broad-spectrum deacetylase inhibitors can be found, we have designed a new class of hydroxamate-containing inhibitors of LpxC, starting with the structure of the physiological substrate. Several of these compounds inhibit both E. coli and A. aeolicus LpxC at similar concentrations. We have also identified a phosphinate-containing substrate analog that inhibits both E. coli and A. aeolicus LpxC, suggesting that the LpxC reaction proceeds by a mechanism similar to that described for other zinc metalloamidases, like carboxypeptidase A and thermolysin. The differences between the phenyloxazoline and the substrate-based LpxC inhibitors might be exploited for developing novel antibiotics targeted either against some or all Gram-negative strains. We suggest that LpxC inhibitors with antibacterial activity be termed "deacetylins."  相似文献   
128.
The deacetylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine (UDP-3-O-acyl-GlcNAc) by LpxC is the committed reaction of lipid A biosynthesis. CHIR-090, a novel N-aroyl-l-threonine hydroxamic acid, is a potent, slow, tight-binding inhibitor of the LpxC deacetylase from the hyperthermophile Aquifex aeolicus, and it has excellent antibiotic activity against Pseudomonas aeruginosa and Escherichia coli, as judged by disk diffusion assays. We now report that CHIR-090 is also a two-step slow, tight-binding inhibitor of E. coli LpxC with Ki = 4.0 nM, Ki* = 0.5 nM, k5 = 1.9 min-1, and k6 = 0.18 min-1. CHIR-090 at low nanomolar levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including P. aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki = 340 nM), a Gram-negative plant endosymbiont that is resistant to this compound. The KM (4.8 microM) and the kcat (1.7 s-1) of R. leguminosarum LpxC with UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine as the substrate are similar to values reported for E. coli LpxC. R. leguminosarum LpxC therefore provides a useful control for validating LpxC as the primary target of CHIR-090 in vivo. An E. coli construct in which the chromosomal lpxC gene is replaced by R. leguminosarum lpxC is resistant to CHIR-090 up to 100 microg/mL, or 400 times above the minimal inhibitory concentration for wild-type E. coli. Given its relatively broad spectrum and potency against diverse Gram-negative pathogens, CHIR-090 is an excellent lead for the further development of new antibiotics targeting the lipid A pathway.  相似文献   
129.
130.
Lipid A disaccharide synthase of Escherichia coli catalyzes the reaction 2,3-diacyl-GlcN-1-P + UDP-2,3-diacyl-GlcN----2',3'-diacyl-GlcN (beta,1'----6)2,3-diacyl-GlcN-1-P + UDP (Ray, B. L., Painter, G., and Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859). Using a strain that overproduces the enzyme about 200-fold we have devised a simple purification to near homogeneity, utilizing two types of dye-ligand resins and heparin-agarose. The overall purification starting with membrane-free extracts was 54-fold (16,000-fold relative to wild-type extracts) with a 31% yield. The subunit molecular mass determined by sodium dodecyl sulfate gel electrophoresis is approximately 42,000 daltons, and the native enzyme appears to be a dimer. The amino-terminal sequence is (X)-(Thr)-Glu-Gln-(X)-Pro-Leu-Thr-Ie-Ala..., consistent with the results predicted from the DNA sequence, Met-Thr-Glu-Gln-Arg-Pro-Leu-Thr-Ile-Ala.... The purified enzyme displays a strong kinetic preference for sugar substrates bearing two fatty acyl moieties, but it is, nevertheless, very useful for the semisynthetic preparation of many lipid A analogs. Gel filtration studies demonstrate that the natural substrates (2,3-diacyl-GlcN-1-P and UDP-2,3-diacyl-GlcN) form micelles (n approximately equal to 300), rather than bilayers, under conditions used to assay the enzyme. Unlike most enzymes of glycerophospholipid synthesis, the lipid A disaccharide synthase does not require the presence of a detergent for catalytic activity. At 1 mM UDP-2,3-diacyl-GlcN the Vmax and Km values for 2,3-diacyl-GlcN-1-P are 14,028 +/- 513 nmol/min/mg and 0.27 +/- 0.02 mM. When 2,3-diacyl-GlcN-1-P is maintained at 1 mM, they are 12,368 +/- 472 nmol/min/mg and 0.11 +/- 0.01 mM for UDP-2,3-diacyl-GlcN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号