首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   67篇
  2022年   6篇
  2021年   19篇
  2020年   8篇
  2019年   8篇
  2018年   18篇
  2017年   20篇
  2016年   15篇
  2015年   34篇
  2014年   28篇
  2013年   49篇
  2012年   63篇
  2011年   59篇
  2010年   52篇
  2009年   28篇
  2008年   33篇
  2007年   41篇
  2006年   39篇
  2005年   40篇
  2004年   31篇
  2003年   35篇
  2002年   27篇
  2001年   16篇
  2000年   9篇
  1999年   20篇
  1998年   11篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   10篇
  1992年   13篇
  1991年   12篇
  1990年   13篇
  1989年   14篇
  1988年   5篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1981年   7篇
  1979年   8篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1972年   4篇
  1962年   4篇
  1961年   3篇
  1957年   3篇
  1950年   3篇
  1934年   4篇
排序方式: 共有935条查询结果,搜索用时 15 毫秒
71.
The cellular counterpart of the “soluble” guanylyl cyclase found in tissue homogenates over 30 years ago is now recognized as the physiological receptor for nitric oxide (NO). The ligand-binding site is a prosthetic haem group that, when occupied by NO, induces a conformational change in the protein that propagates to the catalytic site, triggering conversion of GTP into cGMP. This review focuses on recent research that takes this basic information forward to the beginnings of a quantitative depiction of NO signal transduction, analogous to that achieved for other major transmitters. At its foundation is an explicit enzyme-linked receptor mechanism for NO-activated guanylyl cyclase that replicates all its main properties. In cells, NO signal transduction is subject to additional, activity-dependent modifications, notably through receptor desensitization and changes in the activity of cGMP-hydrolyzing phosphodiesterases. The measurement of these parameters under varying conditions in rat platelets has made it possible to formulate a cellular model of NO-cGMP signaling. The model helps explain cellular responses to NO and their modification by therapeutic agents acting on the guanylyl cyclase or phosphodiesterase limbs of the pathway.  相似文献   
72.
73.

Background

Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries. Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. The first successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.

Results

This study demonstrates that atypical scrapie has distinct clinical, pathological and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.

Conclusions

Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage.  相似文献   
74.
* Information on the genetic variation of plant response to elevated CO(2) (e[CO(2)]) is needed to understand plant adaptation and to pinpoint likely evolutionary response to future high atmospheric CO(2) concentrations. * Here, quantitative trait loci (QTL) for above- and below-ground tree growth were determined in a pedigree - an F(2) hybrid of poplar (Populus trichocarpa and Populus deltoides), following season-long exposure to either current day ambient CO(2) (a[CO(2)]) or e[CO(2)] at 600 microl l(-1), and genotype by environment interactions investigated. * In the F(2) generation, both above- and below-ground growth showed a significant increase in e[CO(2)]. Three areas of the genome on linkage groups I, IX and XII were identified as important in determining above-ground growth response to e[CO(2)], while an additional three areas of the genome on linkage groups IV, XVI and XIX appeared important in determining root growth response to e[CO(2)]. * These results quantify and identify genetic variation in response to e[CO(2)] and provide an insight into genomic response to the changing environment.  相似文献   
75.
Cowpea mosaic virus (CPMV), a plant virus that is a member of the picornavirus superfamily, is increasingly being used for nanotechnology applications, including material science, vascular imaging, vaccine development, and targeted drug delivery. For these applications, it is critical to understand the in vivo interactions of CPMV within the mammalian system. Although the bioavailability of CPMV in the mouse has been demonstrated, the specific interactions between CPMV and mammalian cells need to be characterized further. Here we demonstrate that although the host range for replication of CPMV is confined to plants, mammalian cells nevertheless bind and internalize CPMV in significant amounts. This binding is mediated by a conserved 54-kDa protein found on the plasma membranes of both human and murine cell lines. Studies using a deficient cell line, deglycosidases, and glycosylation inhibitors showed that the CPMV binding protein (CPMV-BP) is not glycosylated. A possible 47-kDa isoform of the CPMV-BP was also detected in the organelle and nuclear subcellular fraction prepared from murine fibroblasts. Further characterization of CPMV-BP is important to understand how CPMV is trafficked through the mammalian system and may shed light on how picornaviruses may have evolved between plant and animal hosts.  相似文献   
76.
77.
Cha SY  Yoon HJ  Lee EM  Yoon MH  Hwang JS  Jin BR  Han YS  Kim I 《Gene》2007,392(1-2):206-220
The complete 16,434-bp nucleotide sequence of the mitogenome of the bumble bee, Bombus ignitus (Hymenoptera: Apidae), was determined. The genome contains the base composition and codon usage typical of metazoan mitogenomes. An unusual feature of the B. ignitus mitogenome is the presence of five tRNA-like structures: two each of the tRNALeu(UUR)-like and tRNASer(AGN)-like sequences and one tRNAPhe-like sequence. These tRNA-like sequences have proper folding structures and anticodon sequences, but their functionality in their respective amino acid transfers remained uncertain. Among these sequences, the tRNALeu(UUR)-like sequence and the tRNASer(AGN)-like sequence are seemingly located within the A+T-rich region. This tRNASer(AGN)-like sequence is highly unusual in that its sequence homology is very high compared to the tRNAMet of other insects, including Apis mellifera, but it contains the anticodon ACT, which designates it as tRNASer(AGN). All PCG and rRNAs are conserved in positions observed most frequently in insect mitogenome structures, but the positions of the tRNAs are highly variable, presenting a new arrangement for an insect mitogenome. As a whole, the B. ignitus mitogenome contains the highest A+T content (86.9%) found in any of the complete insects mt sequences determined to date. All protein-coding sequences started with a typical ATN codon. Nine of the 13 PCGs have a complete termination codon (all TAA), but the remaining four genes terminate with the incomplete TA or T. All tRNAs have the typical clover-leaf structures of mt tRNAs, except for tRNASer(AGN), in which the DHU arm forms a simple loop. All anticodons of B. ignitus tRNAs are identical to those of A. mellifera. In the A+T-rich region, a highly conserved sequence block that was previously described in Orthoptera and Diptera was also present. The stem-and-loop structures that may play a role in the initiation of mtDNA replication were also found in this region. Phylogenetic analysis among three corbiculate tribes, represented by Melipona bicolor (Meliponini), A. mellifera (Apini), and B. ignitus (Bombini), showed the closest relationship between M. bicolor and B. ignitus.  相似文献   
78.
Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA.  相似文献   
79.
Mitochondrial dysfunction is implicated in age‐related degenerative disorders such as Alzheimer's disease (AD). Maintenance of mitochondrial dynamics is essential for regulating mitochondrial function. Aβ oligomers (AβOs), the typical cause of AD, lead to mitochondrial dysfunction and neuronal loss. AβOs have been shown to induce mitochondrial fragmentation, and their inhibition suppresses mitochondrial dysfunction and neuronal cell death. Oxidative stress is one of the earliest hallmarks of AD. Cyclin‐dependent kinase 5 (Cdk5) may cause oxidative stress by disrupting the antioxidant system, including Prx2. Cdk5 is also regarded as a modulator of mitochondrial fission; however, a precise mechanistic link between Cdk5 and mitochondrial dynamics is lacking. We estimated mitochondrial morphology and alterations in mitochondrial morphology‐related proteins in Neuro‐2a (N2a) cells stably expressing the Swedish mutation of amyloid precursor protein (APP), which is known to increase AβO production. We demonstrated that mitochondrial fragmentation by AβOs accompanies reduced mitofusin 1 and 2 (Mfn1/2) levels. Interestingly, the Cdk5 pathway, including phosphorylation of the Prx2‐related oxidative stress, has been shown to regulate Mfn1 and Mfn2 levels. Furthermore, Mfn2, but not Mfn1, over‐expression significantly inhibits the AβO‐mediated cell death pathway. Therefore, these results indicate that AβO‐mediated oxidative stress triggers mitochondrial fragmentation via decreased Mfn2 expression by activating Cdk5‐induced Prx2 phosphorylation.

  相似文献   

80.
Cho EN  Li Y  Kim HJ  Hyun MH 《Chirality》2011,23(4):349-353
A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号