首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   67篇
  2022年   6篇
  2021年   19篇
  2020年   8篇
  2019年   8篇
  2018年   18篇
  2017年   20篇
  2016年   15篇
  2015年   34篇
  2014年   28篇
  2013年   49篇
  2012年   63篇
  2011年   59篇
  2010年   52篇
  2009年   28篇
  2008年   33篇
  2007年   41篇
  2006年   39篇
  2005年   40篇
  2004年   31篇
  2003年   35篇
  2002年   27篇
  2001年   16篇
  2000年   9篇
  1999年   20篇
  1998年   11篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   10篇
  1992年   13篇
  1991年   12篇
  1990年   13篇
  1989年   14篇
  1988年   5篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1981年   7篇
  1979年   8篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1972年   4篇
  1962年   4篇
  1961年   3篇
  1957年   3篇
  1950年   3篇
  1934年   4篇
排序方式: 共有935条查询结果,搜索用时 15 毫秒
101.
Despite intense research, the mechanism of Cd2+ toxicity on photosynthesis is still elusive because of the multiplicity of the inhibitory effects and different barriers in plants. The quick Cd2+ uptake in Synechocystis PCC 6803 permits the direct interaction of cadmium with the photosynthetic machinery and allows the distinction between primary and secondary effects. We show that the CO2‐dependent electron transport is rapidly inhibited upon exposing the cells to 40 µm Cd2+ (50% inhibition in ~15 min). However, during this time we observe only symptoms of photosystem I acceptor side limitation and a build of an excitation pressure on the reaction centres, as indicated by light‐induced P700 redox transients, O2 polarography and changes in chlorophyll a fluorescence parameters. Inhibitory effects on photosystem II electron transport and the degradation of the reaction centre protein D1 can only be observed after several hours, and only in the light, as revealed by chlorophyll a fluorescence transients, thermoluminescence and immunoblotting. Despite the marked differences in the manifestations of these short‐ and long‐term effects, they exhibit virtually the same Cd2+ concentration dependence. These data strongly suggest a cascade mechanism of the toxic effect, with a primary effect in the dark reactions.  相似文献   
102.
A series of 3-(4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridin-2-yl)-1H-quinolin-2-ones have been identified as a new class of VEGFR-2 kinase inhibitors. A variety of (4,5,6,7-tetrahydro-imidazo[5,4-c]pyridin-2-yl)-acetic acid ethyl esters were synthesized, and their VEGFR-2 inhibitory activity was evaluated. Described herein are the preparation of the series and the effects of the compounds on VEGFR-2 kinase activity.  相似文献   
103.
Hibernating ground squirrels maintain homeostasis despite extreme physiological challenges. In winter, these circannual hibernators fast for months while cycling between prolonged periods of low blood flow and body temperature, known as torpor, and short interbout arousals (IBA), where more typical mammalian parameters are rapidly restored. Here we examined the kidney proteome for changes that support the dramatically different physiological demands of the hibernator's year. We identified proteins in 150 two-dimensional gel spots that altered by at least 1.5-fold using liquid chromatography and tandem mass spectrometry. These data successfully classified individuals by physiological state and revealed three dynamic patterns of relative protein abundance that dominated the hibernating kidney: 1) a large group of proteins generally involved with capturing and storing energy were most abundant in summer; 2) a select subset of these also increased during each arousal from torpor; and 3) 14 spots increased in torpor and early arousal were enriched for plasma proteins that enter cells via the endocytic pathway. Immunohistochemistry identified α(2)-macroglobulin and albumin in kidney blood vessels during late torpor and early arousal; both exhibited regional heterogeneity consistent with highly localized control of blood flow in the glomeruli. Furthermore, albumin, but not α(2)-macroglobulin, was detected in the proximal tubules during torpor and early arousal but not in IBA or summer animals. Taken together, our findings indicate that normal glomerular filtration barriers remain intact throughout torpor-arousal cycles but endocytosis, and hence renal function, is compromised at low body temperature during torpor and then recovers with rewarming during arousal.  相似文献   
104.
There has been a growing interest in whether established ecogeographical patterns, such as Bergmann's rule, explain changes in animal morphology related to climate change. Bergmann's rule has often been used to predict that body size will decrease as the climate warms, but the predictions about how body size will change are critically dependent on the mechanistic explanation behind the rule. To investigate change in avian body size in western North America, we used two long‐term banding data sets from central California, USA; the data spanned 40 years (1971–2010) at one site and 27 years (1983–2009) at the other. We found that wing length of birds captured at both sites has been steadily increasing at a rate of 0.024–0.084% per year. Although changes in body mass were not always significant, when they were, the trend was positive and the magnitudes of significant trends were similar to those for wing length (0.040–0.112% per year). There was no clear difference between the rates of change of long‐distance vs. short‐distance migrants or between birds that bred locally compared to those that bred to the north of the sites. Previous studies from other regions of the world have documented decreases in avian body size and have used Bergmann's rule and increases in mean temperature to explain these shifts. Because our results do not support this pattern, we propose that rather than responding to increasing mean temperatures, avian body size in central California may be influenced by changing climatic variability or changes in primary productivity. More information on regional variation in the rates of avian body size change will be needed to test these hypotheses.  相似文献   
105.

Abstact

Background

Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue.

Methods

In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated.

Results

Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABA, GABA, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance.

Conclusions

Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.  相似文献   
106.
CD137 (also called 4-1BB and TNFRSF9) has recently received attention as a therapeutic target for cancer and a variety of autoimmune and inflammatory diseases. Stimulating CD137 in vivo enhances CD8(+) T cell-activity and results in strong immunosuppression in some contexts. This paradoxical phenomenon may be partially explained by the ability of CD137-stimulating reagents (usually agonistic monoclonal antibodies against CD137) to overactivate T cells and other CD137-expressing cells. This over-activity is associated with deleting pathogenic T cells and B cells or generating a tolerogenic microenvironment. Recent studies, however, suggest that the biology of CD137 and its ligand (CD137L) are more complex, mainly due to bidirectional signaling between CD137 and CD137L. For example, signaling through CD137L in non-hematopoietic cells such as epithelial cells and endothelial cells has been shown to play an essential role in sterile inflammation by regulating immune cell recruitment. One outstanding, and clinically important, issue is understanding how bidirectional signaling through CD137 and CD137L controls the vicious cycle of sterile inflammation (e.g., ischemia-reperfusion tissue injury and meta-inflammatory diseases).  相似文献   
107.
The expression of viral antigens in baculovirus-infected insect cells is often ineffective. As an alternative approach, therefore, we developed the recombinant polyhedra technology, which is an efficient strategy for the production of viral subunit vaccine. Here, we report a strategy for the large-scale production of a pseudorabies virus (PRV) gB or gC in the larvae of a baculovirus-infected silkworm, Bombyx mori. We constructed a recombinant B. mori nucleopolyhedrovirus (BmNPV) that expressed recombinant polyhedra together with the epitope regions of PRV gB or heparin-binding domains of PRV gC. Recombinant BmNPV-PRV-gB or BmNPV-PRV-gC-infected silkworm larvae expressed native polyhedrin and fusion protein that was detected using both anti-polyhedrin and anti-PRV gB or anti-PRV-gC antibodies. Electron and confocal microscopy demonstrated that the recombinant polyhedra contained both the fusion protein and native polyhedrin with a normal morphology and that the recombinant polyhedra contained PRV gB or gC. The yield of gB or gC antigen produced in BmNPV-PRV-gB or BmNPV-PRV-gC-infected silkworm larvae reached 0.69 or 0.46 mg per larva, respectively, at 6 days post-infection. These results demonstrate that the recombinant polyhedra strategy can be used for the large-scale production of PRV gB or gC antigen.  相似文献   
108.
109.
Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.  相似文献   
110.
Ammonia losses during swine wastewater treatment were examined using single- and two-chambered microbial fuel cells (MFCs). Ammonia removal was 60% over 5 days for a single-chamber MFC with the cathode exposed to air (air-cathode), versus 69% over 13 days from the anode chamber in a two-chamber MFC with a ferricyanide catholyte. In both types of systems, ammonia losses were accelerated with electricity generation. For the air-cathode system, our results suggest that nitrogen losses during electricity generation were increased due to ammonia volatilization with conversion of ammonium ion to the more volatile ammonia species as a result of an elevated pH near the cathode (where protons are consumed). This loss mechanism was supported by abiotic tests (applied voltage of 1.1 V). In a two-chamber MFC, nitrogen losses were primarily due to ammonium ion diffusion through the membrane connecting the anode and cathode chambers. This loss was higher with electricity generation as the rate of ammonium transport was increased by charge transfer across the membrane. Ammonia was not found to be used as a substrate for electricity generation, as intermittent ammonia injections did not produce power. The ammonia-oxidizing bacterium Nitrosomonas europaea was found on the cathode electrode of the single-chamber system, supporting evidence of biological nitrification, but anaerobic ammonia-oxidizing bacteria were not detected by molecular analyses. It is concluded that ammonia losses from the anode chamber were driven primarily by physical-chemical factors that are increased with electricity generation, although some losses may occur through biological nitrification and denitrification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号