首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
  71篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   1篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1968年   1篇
  1967年   1篇
  1935年   1篇
  1933年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
11.
12.
Radulescu  Eugen 《Planta》1933,20(2):244-286
Ohne ZusammenfassungMit 14 Textabbildungen.  相似文献   
13.
The Golgi apparatus is a highly dynamic organelle whose organization is maintained by a proteinaceous matrix, cytoskeletal components, and inositol phospholipids. In mammalian cells, disassembly of the organelle occurs reversibly at the onset of mitosis and irreversibly during apoptosis. Several pharmacological agents including nocodazole, brefeldin A (BFA), and primary alcohols (1-butanol) induce reversible fragmentation of the Golgi apparatus. To dissect the mechanism of Golgi reassembly, rat NRK and GH3 cells were treated with 1-butanol, BFA, or nocodazole. During washout of 1-butanol, clathrin, a ubiquitous coat protein implicated in vesicle traffic at the trans-Golgi network and plasma membrane, and abundant clathrin coated vesicles were recruited to the region of nascent Golgi cisternae. Knockdown of endogenous clathrin heavy chain showed that the Golgi apparatus failed to reform efficiently after BFA or 1-butanol removal. Instead, upon 1-butanol washout, it maintained a compact, tight morphology. Our results suggest that clathrin is required to reassemble fragmented Golgi elements. In addition, we show that after butanol treatment the Golgi apparatus reforms via an initial compact intermediate structure that is subsequently remodeled into the characteristic interphase lace-like morphology and that reassembly requires clathrin.  相似文献   
14.
The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized.  相似文献   
15.
16.
17.
The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.  相似文献   
18.
During the G2-M transition, the highly organized Golgi apparatus undergoes reversible fragmentation through unstacking of the cisternal ribbon and disassembly into radially dispersed vesicles and tubules. These Golgi-derived fragments redistribute randomly within the cytoplasm, partition stochastically, and in telophase coalesce to generate a functionally and structurally intact Golgi complex. Here we identified a novel step in postmitotic Golgi reassembly that requires the clathrin heavy chain (CHC). We used siRNA-mediated CHC knockdown, biochemistry, and morphological analysis and showed that the spindle- and spindle pole-associated clathrin pools are membrane-bound and required for postmitotic Golgi reassembly. The results presented here show that clathrin remains associated with the spindle poles throughout mitosis and that this clathrin pool is distinct from the previously characterized spindle-associated population. We suggest that clathrin may provide a template for postmitotic Golgi reassembly and cisternal remodeling. In absence of the CHC, the Golgi apparatus remained disconnected and disordered and failed to regain its characteristic perinuclear, lace-like morphology. Our findings build on previous independent reports that clathrin is required for Golgi reassembly following disruption with pharmacological agents and for mitotic chromosome congression.  相似文献   
19.
This study examines the importance of avian incubation costs as determinants of clutch-size variation by performing clutch-size and brood-size manipulations in the same population of Collared Flycatchers Ficedula albicollis during the same breeding season. In 2 5 cases when three or more clutches of the same size were completed on the same day, we moved two eggs on the day after the last egg had been laid from one randomly selected clutch (C) to another (C) and moved two other eggs from this to a third clutch (C+). In 20 other cases of simultaneously completed clutches of the same size, we moved two randomly selected young from one brood to a second and from that moved two other young to a third (B, B and B+groups). Most females were weighed the day after completion of the clutch and 1–4 days before hatching of the young, and some of them also 10–14 days after hatching of the young. We measured the daily energy expenditure of females incubating manipulated clutches of 4, 6 and 8 eggs by means of the doubly-labelled water (D218O) technique and also recorded their nest attendance. Hatching success of fertilized eggs was reduced in the enlarged clutches compared with control and reduced clutches. Females expired on average 3142.6 ml CO2 and expended 78.6 kJ per day while incubating, which corresponds to a metabolic intensity of 3.3 times BMR. Daily energy expenditure increased with clutch-size due to higher costs while incubating, and not because of changed activity patterns. There were no significant differences in length of incubation, female mass or mass changes between phases for the C, C and C+groups. In both the C and B groups, enlarged broods produced significantly more fledged young than control broods, and those significantly more than reduced broods. Fledgling tarsus-length and mass did not differ significantly between treatments in either the C or B groups. There was no significant difference in breeding success between clutch and brood manipulations. In this season, incubation costs did not entail significant fitness losses, expressed either as fledgling production or female condition. Also, control females could have raised more young to fledging age than they did with no apparent costs.  相似文献   
20.
Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in β‐catenin (CTNNB1). We have compared the dynamics and the potency of β‐catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β‐catenin took much longer to achieve Wnt deregulation and acquire a crypt‐progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β‐catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β‐catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E‐cadherin and a higher number of E‐cadherin:β‐catenin complexes at the membrane. Reduction in E‐cadherin synergised with an activating mutation of β‐catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of β‐catenin that is required to drive transformation, and E‐cadherin can act as a buffer to sequester mutated β‐catenin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号