首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   33篇
  2023年   3篇
  2022年   7篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   13篇
  2017年   8篇
  2016年   7篇
  2015年   26篇
  2014年   21篇
  2013年   33篇
  2012年   33篇
  2011年   45篇
  2010年   32篇
  2009年   30篇
  2008年   27篇
  2007年   31篇
  2006年   38篇
  2005年   38篇
  2004年   23篇
  2003年   10篇
  2002年   16篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   13篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1987年   3篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   6篇
  1969年   2篇
  1968年   4篇
  1967年   1篇
  1966年   3篇
  1965年   4篇
  1964年   5篇
  1960年   1篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
91.
After puberty, the thymus undergoes a dramatic loss in volume, in weight and in the number of thymocytes, a phenomenon termed age-associated thymic involution. Recently, it was reported that age-associated thymic involution did not occur in mice expressing a rearranged transgenic (Tg) TCRalphabeta receptor. This finding implied that an age-associated defect in TCR rearrangement was the major, if not the only, cause for thymic involution. Here, we examined thymic involution in three other widely used MHC class I-restricted TCRalphabeta Tg mouse strains and compared it with that in non-Tg mice. In all three TCRalphabeta Tg strains, as in control mice, thymocyte numbers were reduced by approximately 90% between 2 and 24 mo of age. The presence or absence of the selecting MHC molecules did not alter this age-associated cell loss. Our results indicate that the expression of a rearranged TCR alone cannot, by itself, prevent thymic involution. Consequently, other presently unknown factors must also contribute to this phenomenon.  相似文献   
92.
Imaging tissue samples by polarization‐resolved second harmonic generation microscopy provides both qualitative and quantitative insights into collagen organization in a label‐free manner. Polarization‐resolved second harmonic generation microscopy goes beyond simple intensity‐based imaging by adding the laser beam polarization component and applying different quantitative metrics such as the anisotropy factor. It thus provides valuable information on collagen arrangement not available with intensity measurements alone. Current established approaches are limited to calculating the anisotropy factor for only a particular laser beam polarization and no general guidelines on how to select the best laser beam polarization have yet been defined. Here, we introduce a novel methodology for selecting the optimal laser beam polarization for characterizing tissues using the anisotropy in the purpose of identifying cancer signatures. We show that the anisotropy factor exhibits a similar laser beam polarization dependence to the second harmonic intensity and we combine it with the collagen orientation index computed by Fast Fourier Transform analysis of the recorded images to establish a framework for choosing the laser beam polarization that is optimal for an accurate interpretation of polarization‐resolved second harmonic generation microscopy images and anisotropy maps, and hence a better differentiation between healthy and dysplastic areas.

SHG image of skin tissue (a) and a selected area of interest for which we compute the SHG intensity (b) and anisotropy factor (c) dependence on the laser beam polarization and also the FFT spectrum (d) to evaluate the collagen orientation index.  相似文献   

93.
Fourteen polymorphic microsatellite markers were isolated from the entomopathogenic fungus, Metarhizium anisopliae, based on enriched genomic libraries. In order to assess allelic variability, the microsatellite loci were analysed in a collection of 34 isolates sampled from across Switzerland. The number of detected alleles in 14 loci ranged from two to eight and expected heterozygosity from 0.265 to 0.808. Because of the high expected heterozygosity, the 14 microsatellite loci are very useful for ecological studies and analysis of population diversity, and to identifying, monitoring, and tracking M. anisopliae strains applied as biological control agents.  相似文献   
94.
Although proteases represent an estimated 5% to 10% of potential drug targets, inhibitors for metalloproteases (MPs) account for only a small proportion of all approved drugs, failures of which have typically been associated with lack of selectivity. In this study, the authors describe a novel and universal binding assay based on an actinonin derivative and show its binding activities for several MPs and its lack of activity toward all the non-MPs tested. This newly developed assay would allow for the rapid screening for inhibitors of a given MP and for the selectivity profiling of the resulting hits. The assay has successfully enabled for the first time simultaneous profiling of 8 well-known inhibitors against a panel of selected MPs. Previously published activities for these inhibitors were confirmed, and the authors have also discovered new molecular targets for some of them. The authors conclude that their profiling platform provides a generic assay solution for the identification of novel metalloprotease inhibitors as well as their selectivity profiling using a simple and homogeneous assay.  相似文献   
95.
Scaling of respiration from the leaf to the canopy level currently depends on identification of physiological parameters that are tightly linked to respiration and that can readily be determined. Several recent studies have helped provide guides to predicting whole canopy respiration on the basis of foliar nitrogen (N). This approach is potentially powerful owing to the well‐described patterns of allocation of N that follow interception of radiation. In the present study, we investigated the sensitivity of the N–respiration correlation to environmental and developmental factors, in order to evaluate its usage for attempts to scale respiration to the organism and ecosystem level. We studied fully expanded, 1 and 2‐year‐old, and current‐year needles from canopies of Pinus radiata that had been treated (unthinned, thinned and thinned+fertilized treatments) in ways likely to induce a wide range of growth and respiratory responses. We examined respiration in detail during the growth period in spring and again at the end of summer, using calorespirometric methods (combined measurements of CO2 and heat rates) to determine the respiration rates , instantaneous enthalpic growth rates (RSGΔHB, a measure of the conservation of electrons in anabolic products) and the enthalpy conversion efficiency (ηH) of needles differing in age. A general linear model revealed that was positively correlated with needle N, but this correlation was strongly dependent on the season and the needle age – indicating an important physiological difference between expanding young needles and fully expanded old needles. Furthermore, the strength of the correlation between needle N and respiration was comparatively weak for the current year, expanding foliage, indicating that factors other than foliage N significantly influenced the respiration of young needles. The analysis of instantaneous growth rates revealed two general processes. Older, nonexpanding foliage showed considerable rates of enthalpic growth (increases in enthalpy) that was mainly caused by the increment of lignin during secondary growth. Secondly, canopy development appeared dynamic and to be optimized according to environmental drivers and constraints – such as light and water availability. In late spring, needle extension slowed in the upper, but not the lower canopy, because the upper canopy appeared to be affected first by the onset of drought stress in late spring. Growth rates were reduced in the upper canopy despite greater rates of respiration, indicating higher demand of ATP for the maintenance of protein and for export of sugars. Consequently, the enthalpy conversion efficiency and enthalpic N productivity (enthalpic growth per unit N) were comparatively poor indicating advanced development of needles in the upper canopy. We suggest that the growth and maintenance paradigm of respiration is, at best, only moderately useful when applied to whole trees, and is not valid at the cellular level or that of the plant organ. A different concept, namely that of respiratory efficiency, seems a more suitable way to represent respiration in carbon (C) balance models and should help provide a better mechanistic understanding of how respiration affects the C conversion efficiency of plants, and ultimately the net primary productivity of ecosystems.  相似文献   
96.
Partial urinary bladder outlet obstruction mediates cyclic ischemia and reperfusion resulting in the generation of both reactive oxygen species and reactive nitrogen species. It is theorized that with an increase in the level of free radicals, the level of protective antioxidants should decrease. To test this hypothesis, two electron transfer assays, the FRAP method and the CUPRAC method, were used to determine the level of antioxidant reactivity of obstructed and control bladder tissue. The results showed that the CUPRAC assay detected a significant decrease in the reactivity of antioxidants found within the obstructed bladder tissue as compared to the control bladder tissue in both the muscle and mucosa. The FRAP assay did not detect any difference between the muscle and mucosa of the obstructed and control bladder tissue.  相似文献   
97.
The self-assembly of hybrid diblock copolymers composed of poly(HPMA) and beta-sheet peptide P11 (CH(3)CO-QQRFQWQFEQQ-NH(2)) blocks was investigated. Copolymers were synthesized via thiol-maleimide coupling reaction, by conjugation of semitelechelic poly(HPMA)-SH with maleimide-modified beta-sheet peptide. As expected, CD and CR binding studies showed that the peptide block imposed its beta-sheet structural arrangement on the structure of diblock copolymers. TEM and AFM proved that peptide and these copolymers had the ability to self-assemble into fibrils.  相似文献   
98.
The insulin -23Hph and IGF2 Apa polymorphisms were genotyped in Romanian patients with T1DM (n = 204), T2DM (n = 215) or obesity (n = 200) and normoponderal healthy subjects (n = 750). The genotypes of both polymorphisms were distributed in concordance with Hardy-Weinberg equilibrium in all groups. The -23Hph AA genotype increased the risk for T1DM (OR: 3.22, 95%CI: 2.09-4.98, p < 0,0001), especially in patients without macroalbuminuria (OR: 4.32, 95%CI: 2.54-7.45, p < 0,0001). No other significant association between the alleles or genotypes of insulin -23Hph and IGF2 Apa and diabetes or obesity was identified.  相似文献   
99.
Summary The study of dependence between random variables is a mainstay in statistics. In many cases, the strength of dependence between two or more random variables varies according to the values of a measured covariate. We propose inference for this type of variation using a conditional copula model where the copula function belongs to a parametric copula family and the copula parameter varies with the covariate. In order to estimate the functional relationship between the copula parameter and the covariate, we propose a nonparametric approach based on local likelihood. Of importance is also the choice of the copula family that best represents a given set of data. The proposed framework naturally leads to a novel copula selection method based on cross‐validated prediction errors. We derive the asymptotic bias and variance of the resulting local polynomial estimator, and outline how to construct pointwise confidence intervals. The finite‐sample performance of our method is investigated using simulation studies and is illustrated using a subset of the Matched Multiple Birth data.  相似文献   
100.
Inflammation and immune system dysfunction contributes to the development of cardiovascular and renal disease. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that carries a high risk for both renal and cardiovascular disease. While hemodynamic changes that may contribute to increased cardiovascular risk have been reported in humans and animal models of SLE, renal hemodynamics have not been widely studied. The renin-angiotensin system (RAS) plays a central role in renal hemodynamic control, and although RAS blockade is a common therapeutic strategy, the role of RAS in hemodynamic function during SLE is not clear. This study tested whether mean arterial pressure (MAP) and renal hemodynamic responses to acute infusions of ANG II in anesthetized animals were enhanced in an established female mouse model of SLE (NZBWF1). Baseline MAP was not different between anesthetized SLE and control (NZWLacJ) mice, while renal blood flow (RBF) was significantly lower in mice with SLE. SLE mice exhibited an enhanced pressor response and greater reduction in RBF after ANG II infusion. An acute infusion of the ANG II receptor blocker losartan increased RBF in control mice but not in mice with SLE. Renin and ANG II type 1 receptor expression was significantly lower, and ANG II type 2 receptor expression was increased in the renal cortex from SLE mice compared with controls. These data suggest that there are fewer ANG II receptors in the kidneys from mice with SLE but that the existing receptors exhibit an enhanced sensitivity to ANG II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号