首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   11篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   7篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
排序方式: 共有105条查询结果,搜索用时 162 毫秒
61.
Neonatal cerebellar cells were utilized as a model system to examine the effect of 20 day pregnant rat serum on proliferative growth in the CNS. Cells were prepared by mechanical dissociation and cultured as mixed cells or populations enriched in astrocytes or oligodendrocytes. Cell proliferation was estimated by measurement of DNA, protein, and/or mitochondrial reductase activity (MTT). When mixed cells were incubated with 10% male rat serum, both total DNA and protein content increased after 6 days of culture. By contrast, neither of these parameters were altered in cultures incubated with 10% pregnant serum. When cells were incubated with either male or pregnant sera, changes in MTT activity paralleled changes in protein content. Graded concentrations of pregnant serum (5–20%) added to mixed cell cultures produced consistently lower MTT values when compared with identical concentrations of male serum. In addition, MTT activity was diminished in both astrocytes and oligodendrocytes incubated with graded concentrations of pregnant sera when compared with similar concentrations of non-pregnant sera. When potential effects of these different sera on the cell cycle were examined, an increase in the number of cells in the S and G2/M phase was similar, and DNA doubling began to increase at 96 hrs in the presence of either male or 20 day pregnant sera. Thus the inhibition of cell growth by pregnant serum was not likely a result of either cytotoxicity or a delay of entry of cells into the cell cycle. To examine whether this inhibition of cell growth may reflect the effect of pregnant serum on endogenous growth factor production, we tested the production of IGF-II by cerebellar cells. Production of an endogenous source of IGF-II was apparent using an RNAse protection assay and was noted using Slot Blot analysis of mRNA extracted at sequential times during cell incubation. Mixed cell cultures also secreted immunologically defined IGF-II. These observations are consistent with the previous demonstration that the fraction of pregnant serum which bound IGF-II also inhibited cell growth. The inhibitory effect of pregnant serum was diminished by preincubating aliquots of sera with graded concentrations of IGF-I prior to adding sera to tissue culture medium. Pregnant serum inhibition was also diminished by prolonging incubation times beyond 6 days. The blunting of pregnant serum inhibition may have been consequent to either a continuing production of endogenous growth factors or to the potential emergence of resistant cells due to prolonged tissue culture incubation. Since cells studied in a primary culture of limited duration may more accurately reflect the physiologic properties of this tissue, the model presented herein could provide a new approach to study brain development.West Side Medical CenterNorthwestern University medical School  相似文献   
62.
Plant competition is a primary ecological process limiting grassland restoration success. Appropriate restoration techniques require an understanding of the degree to which intra and interspecific competition control invasive and native plant growth. The objective of this study was to determine how the intensity of intra and interspecific competition changes during early stages of plant growth. Two invasive (Bromus tectorum and Taeniatherum caput-medusae) and two native (Pseudoroegneria spicata and Poa secunda) species were grown in a diallel competition experiment, either alone or in 1:1 binary combinations and exposed to two levels of N (no N or 400 mg N kg−1 soil added) in a greenhouse. Total biomass for each species was quantified over four harvests and competitive effects were calculated. Our results show that the relative magnitude of intra and interspecific competition changes through time. Intraspecific competition was intense for native species at the initial harvests and therefore important in contributing to the outcome of final size of native species seedlings. Interestingly, bluebunch wheatgrass imposed interspecific competition on annual grasses at the first two harvests and appeared to be a better competitor than Sandberg’s bluegrass. We found that fast growing invasive species became more competitive compared to slow growing native species with increasing N and appear to establish a positive feedback mechanism between size and resource uptake. Opportunities to improve restoration success exist from determining the optimum combination of density, species proportion, and their spatial arrangement in various ecosystems and environments.  相似文献   
63.

Background  

Despite decades of research, the molecular mechanisms responsible for the evolution of morphological diversity remain poorly understood. While current models assume that species-specific morphologies are governed by differential use of conserved genetic regulatory circuits, it is debated whether non-conserved taxonomically restricted genes are also involved in making taxonomically relevant structures. The genomic resources available in Hydra, a member of the early branching animal phylum Cnidaria, provide a unique opportunity to study the molecular evolution of morphological novelties such as the nematocyte, a cell type characteristic of, and unique to, Cnidaria.  相似文献   
64.
Abundance and Diversity of Viruses in Six Delaware Soils   总被引:9,自引:3,他引:6       下载免费PDF全文
The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coastal plain forest soils, and two piedmont forest soils. Viral abundance was measured using epifluorescence microscopy, while viral diversity was assessed from morphological data obtained through transmission electron microscopy. Extracted soil virus communities were dominated by bacteriophages that demonstrated a wide range of capsid diameters (20 nm to 160 nm) and morphologies, including filamentous forms and phages with elongated capsids. The reciprocal Simpson's index suggests that forest soils harbor more diverse assemblages of viruses, particularly in terms of morphological distribution. Repeated extractions of virus-like particles (VLPs) from soils indicated that the initial round of extraction removes approximately 70% of extractable viruses. Higher VLP abundances were observed in forest soils (1.31 × 109 to 4.17 × 109 g−1 dry weight) than in agricultural soils (8.7 × 108 to 1.1 × 109 g−1 dry weight). Soil VLP abundance was significantly correlated to moisture content (r = 0.988) but not to soil texture. Land use (agricultural or forested) was significantly correlated to both bacterial (r = 0.885) and viral (r = 0.812) abundances, as were soil organic matter and water content. Thus, land use is a significant factor influencing viral abundance and diversity in soils.  相似文献   
65.
Single-copy nuclear DNAs (scnDNAs) of eight species of arvicoline and six species of murine rodents were compared using DNA-DNA hybridization. The branching pattern derived from the DNA comparisons is congruent with the fossil evidence and supported by comparative biochemical, chromosomal, and morphological studies. The recently improved fossil record for these lineages provides seven approximate divergence dates, which were used to calibrate the DNA-hybridization data. The average rate of scnDNA divergence was estimated as 2.5%/Myr. This is approximately 10 times the rate in the hominoid primates. These results agree with previous reports of accelerated DNA evolution in muroid rodents and extend the DNA-DNA hybridization data set of Brownell.   相似文献   
66.
We have sequenced the small-subunit ribosomal RNA gene of the amoebo- flagellate protozoan Naegleria gruberi. Comparison of this sequence with the rRNA sequences of other eukaryotes resulted in a phylogenetic tree that supports the suggested polyphyletic origin of amoebas and suggests a flagellate ancestry for Naegleria.   相似文献   
67.
The uropygial glands of birds are sebaceous organs that contribute to the water-repellent properties of the feather coat. We studied the histological and histochemical characteristics of the uropygial gland of chimango caracara using hematoxylin and eosin (H & E), Gomori´s trichrome, orcein, Gomori´s reticulin, periodic acid-Schiff (PAS), Alcian blue (AB) and a variety of lectins. The gland is composed of two lobes and a papilla with 20 downy feathers. It is surrounded by a capsule of dense connective tissue that contains elastic, reticular and smooth muscle fibers. The papilla is delicate and has two excretory ducts. The gland mass relative to body mass was 0.143%. Both adenomer cells and their secretions were stained with Sudan IV, PAS and AB, and were positive for numerous lectins that indicated the presence of lipids and carbohydrates. Immunohistochemical techniques to detect PCNA confirmed cell proliferation in the basal stratum of the adenomer cells. The lipids and glycoconjugates secreted by the uropygial gland serve numerous functions including protection against microorganisms.  相似文献   
68.
Evolutionary rates for tuf genes in endosymbionts of aphids   总被引:5,自引:1,他引:4  
The gene encoding elongation factor Tu (tuf) in aphid endosymbionts (genus Buchnera) evolves at rates of 1.3 x 10(-10) to 2.5 x 10(-10) nonsynonymous substitutions and 3.9 x 10(-9) to 8.0 x 10(-9) synonymous substitutions per position per year. These rates, which are at present among the most reliable substitution rates for protein-coding genes of bacteria, have been obtained by calibrating the nodes in the phylogenetic tree produced from the Buchnera EF-Tu sequences using divergence times for the corresponding ancestral aphid hosts. We also present data suggesting that the rates of nonsynonymous substitutions are significantly higher in the endosymbiont lineages than in the closely related free-living bacteria Escherichia coli and Salmonella typhimurium. Synonymous substitution rates for Buchnera approximate estimated mutation rates for E. coli and S. typhimurium, as expected if synonymous changes act as neutral mutations in Buchnera. We relate the observed differences in substitution frequencies to the absence of selective codon preferences in Buchnera and to the influence of Muller's ratchet on small asexual populations.   相似文献   
69.
The purpose of the present study was to assess atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) mineralization by indigenous microbial communities and to investigate constraints associated with atrazine biodegradation in environmental samples collected from surface soil and subsurface zones at an agricultural site in Ohio. Atrazine mineralization in soil and sediment samples was monitored as 14CO2 evolution in biometers which were amended with 14C-labeled atrazine. Variables of interest were the position of the label ([U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine), incubation temperature (25°C and 10°C), inoculation with a previously characterized atrazine-mineralizing bacterial isolate (M91-3), and the effect of sterilization prior to inoculation. In uninoculated biometers, mineralization rate constants declined with increasing sample depth. First-order mineralization rate constants were somewhat lower for [2-14C-ethyl]-atrazine when compared to those of [U-14C-ring]-atrazine. Moreover, the total amount of 14CO2 released was less with [2-14C-ethyl]-atrazine. Mineralization at 10°C was slow and linear. In inoculated biometers, less 14CO2 was released in [2-14C-ethyl]-atrazine experiments as compared with [U-14C-ring]-atrazine probably as a result of assimilatory incorporation of 14C into biomass. The mineralization rate constants (k) and overall extents of mineralization (P max ) were higher in biometers that were not sterilized prior to inoculation, suggesting that the native microbial populations in the sediments were contributing to the overall release of 14CO2 from [U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine. A positive correlation between k and aqueous phase atrazine concentrations (C eq ) in the biometers was observed at 25°C, suggesting that sorption of atrazine influenced mineralization rates. The sorption effect on atrazine mineralization was greatly diminished at 10°C. It was concluded that sorption can limit biodegradation rates of weakly-sorbing solutes at high solid-to-solution ratios and at ambient surface temperatures if an active degrading population is present. Under vadose zone and subsurface aquifer conditions, however, low temperatures and the lack of degrading organisms are likely to be primary factors limiting the biodegradation of atrazine.  相似文献   
70.
Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction.Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号