首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12939篇
  免费   1153篇
  国内免费   222篇
  2023年   86篇
  2022年   148篇
  2021年   343篇
  2020年   224篇
  2019年   231篇
  2018年   300篇
  2017年   245篇
  2016年   370篇
  2015年   613篇
  2014年   589篇
  2013年   743篇
  2012年   881篇
  2011年   825篇
  2010年   522篇
  2009年   494篇
  2008年   673篇
  2007年   593篇
  2006年   526篇
  2005年   491篇
  2004年   523篇
  2003年   455篇
  2002年   419篇
  2001年   399篇
  2000年   336篇
  1999年   309篇
  1998年   144篇
  1997年   95篇
  1996年   103篇
  1995年   128篇
  1994年   95篇
  1993年   88篇
  1992年   171篇
  1991年   196篇
  1990年   139篇
  1989年   162篇
  1988年   139篇
  1987年   133篇
  1986年   113篇
  1985年   134篇
  1984年   108篇
  1983年   89篇
  1982年   59篇
  1981年   65篇
  1980年   62篇
  1979年   71篇
  1978年   73篇
  1977年   64篇
  1975年   53篇
  1974年   49篇
  1973年   49篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
991.
The Fawn-Hooded rat (FHR) is a genetic strain that has been extensively studied as a model of primary pulmonary hypertension in adult rats. Based on our recent observations that alveolar number and pulmonary arterial density are reduced in FHRs raised at Denver's altitude, we hypothesized that early abnormalities in pulmonary vascular development contribute to the progression of pulmonary hypertension in the FHR. We found that endothelial nitric oxide synthase (eNOS) protein content was lower in the lungs of fetal, 1- and 7-day-old, 3-week-old, and adult FHRs compared with that in the normal Sprague-Dawley (SDR) and Fischer rat strains, all raised at Denver's altitude. In contrast, lung expression of the endothelial proteins kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1) and platelet endothelial cell adhesion molecule-1 (CD31) was not different between strains. Barium arteriograms showed that pulmonary arterial density was reduced in 3-week-old FHRs compared with SDRs. Perinatal treatment of FHRs with mild hyperbaria to simulate sea-level alveolar PO(2) improved lung eNOS content and pulmonary vascular growth and reduced right ventricular hypertrophy. We conclude that the development of pulmonary hypertension in Denver-raised FHRs is characterized by reductions in lung eNOS expression and abnormal pulmonary vascular growth during the fetal, neonatal, and postnatal periods.  相似文献   
992.
We hypothesized that disrupted alveolarization and lung vascular growth caused by brief perinatal hypoxia would predispose infant rats to higher risk for developing pulmonary hypertension when reexposed to hypoxia. Pregnant rats were exposed to 11% inspired oxygen fraction (barometric pressure, 410 mmHg; inspired oxygen pressure, 76 mmHg) for 3 days before birth and were maintained in hypoxia for 3 days after birth. Control rats were born and raised in room air. At 2 wk of age, rats from both groups were exposed to hypoxia for 1 wk or kept in room air. We found that brief perinatal hypoxia resulted in a greater increase in right ventricular systolic pressure and higher ratio of right ventricle to left ventricle plus septum weights after reexposure to hypoxia after 2 wk of age. Moreover, perinatal hypoxic rats had decreased radial alveolar counts and reduced pulmonary artery density. We conclude that brief perinatal hypoxia increases the severity of pulmonary hypertension when rats are reexposed to hypoxia. We speculate that disrupted alveolarization and lung vascular growth following brief perinatal hypoxia may increase the risk for severe pulmonary hypertension with exposure to adverse stimuli later in life.  相似文献   
993.
Anchorage removal like growth factor removal induces apoptosis. In the present study we have characterized signaling pathways that can prevent this cell death using a highly growth factor- and anchorage-dependent line of lung fibroblasts (CCL39). After anchorage removal from exponentially growing cells, annexin V-FITC labeling can be detected after 8 h. Apoptosis was confirmed by analysis of sub-G1 DNA content and Western blotting of the caspase substrate poly (ADP-ribose) polymerase. Growth factor withdrawal accelerates and potentiates suspension-induced cell death. Activation of Raf-1 kinase in suspension cultures of CCL39 or Madin-Darby canine kidney cells stably expressing an estrogen-inducible activated-Raf-1 construct (DeltaRaf-1:ER) suppresses apoptosis induced by growth factor and/or anchorage removal. This protective effect appears to be mediated by the Raf, mitogen- or extracellular signal-regulated kinase kinase (MEK), and mitogen-activated protein kinase module because it is sensitive to pharmacological inhibition of MEK-1 and it can be mimicked by expression of constitutively active MEK-1 in CCL39 cells. Finally, apoptosis induced by disruption of the actin cytoskeleton with the Rho-directed toxin B (Clostridium difficile) is prevented by activation of the DeltaRaf-1:ER chimeric construct. These findings highlight the ability of p42/p44 mitogen-activated protein kinase to generate survival signals that counteract cell death induced by loss of matrix contact, cytoskeletal integrity, and extracellular mitogenic factors.  相似文献   
994.
To follow the transport of human syntaxin (Syn) 3 to theapical surface of intestinal cells, we produced and expressed in Caco-2cells a chimera made of the entire Syn3 coding sequence and theextracellular domain of the human transferrin receptor (TfR). Thischimera (Syn3TfR) was localized to the apical membrane and wastransported along the direct apical pathway, suggesting that this isalso the case for endogenous Syn3. To test the potential role of Syn3in apical transport, we overexpressed it in Caco-2 cells and measuredthe efficiency of apical and basolateral delivery of several endogenousmarkers. We observed a strong inhibition of apical delivery ofsucrase-isomaltase (SI), an apical transmembrane protein, and of-glucosidase, an apically secreted protein. No effect was observedon the basolateral delivery of Ag525, a basolateral antigen, stronglysuggesting that Syn3 is necessary for efficient delivery of proteins tothe apical surface of intestinal cells.

  相似文献   
995.
The fact that sexual segregation can occur in wild ruminants independently of sex-related differences in habitat use suggests that it results at least partly from social mechanisms. One of the simplest mechanisms which can be hypothesised is that individuals avoid the congener classes which frequently try to interact with them (be these interactions 'agonistic' or 'sexual', since courtship behaviour components typically induce withdrawal when performed outside the rut). The aim of the present study was to test, in mouflon sheep (Ovis gmelini), whether the age-sex classes which exchange frequent interactions on meeting occur rarely inside the same groups. Observations were made during winter, on a small population in Germany. Interactions were recorded at an attractive site where all age-sex classes met daily. Foot transects were conducted in parallel over the whole study area in order to determine group composition. As expected, adults of different sexes exchanged frequent interactions at the attractive site and were rarely found in the same groups under free-ranging conditions, while adult females, who interacted little with one another, were quite frequently associated. However, adult males simultaneously exhibited the highest rate of interaction at the attractive site and the highest frequency of association under free-ranging conditions. Unlike female-female and male-female pairs, in which interactions with a clear initiator and a clear recipient predominated, male-male pairs exchanged often spectacular but 'symmetrical' interactions (during which the two individuals behaved in the same way). The hypothesis that sexual segregation results from the avoidance of the congener classes which frequently engage interactions only holds for females. Adult rams interact frequently and seek companions with whom symmetrical interactions can be performed.  相似文献   
996.
Lycopene is the pigment principally responsible for the characteristic deep-red color of ripe tomato fruits and tomato products. It has attracted attention due to its biological and physicochemical properties, especially related to its effects as a natural antioxidant. Although it has no provitamin A activity, lycopene does exhibit a physical quenching rate constant with singlet oxygen almost twice as high as that of beta-carotene. This makes its presence in the diet of considerable interest. Increasing clinical evidence supports the role of lycopene as a micronutrient with important health benefits, because it appears to provide protection against a broad range of epithelial cancers. Tomatoes and related tomato products are the major source of lycopene compounds, and are also considered an important source of carotenoids in the human diet. Undesirable degradation of lycopene not only affects the sensory quality of the final products, but also the health benefit of tomato-based foods for the human body. Lycopene in fresh tomato fruits occurs essentially in the all-trans configuration. The main causes of tomato lycopene degradation during processing are isomerization and oxidation. Isomerization converts all-trans isomers to cis-isomers due to additional energy input and results in an unstable, energy-rich station. Determination of the degree of lycopene isomerization during processing would provide a measure of the potential health benefits of tomato-based foods. Thermal processing (bleaching, retorting, and freezing processes) generally cause some loss of lycopene in tomato-based foods. Heat induces isomerization of the all-trans to cis forms. The cis-isomers increase with temperature and processing time. In general, dehydrated and powdered tomatoes have poor lycopene stability unless carefully processed and promptly placed in a hermetically sealed and inert atmosphere for storage. A significant increase in the cis-isomers with a simultaneous decrease in the all-trans isomers can be observed in the dehydrated tomato samples using the different dehydration methods. Frozen foods and heat-sterilized foods exhibit excellent lycopene stability throughout their normal temperature storage shelf life. Lycopene bioavailability (absorption) can be influenced by many factors. The bioavailability of cis-isomers in food is higher than that of all-trans isomers. Lycopene bioavailability in processed tomato products is higher than in unprocessed fresh tomatoes. The composition and structure of the food also have an impact on the bioavailability of lycopene and may affect the release of lycopene from the tomato tissue matrix. Food processing may improve lycopene bioavailability by breaking down cell walls, which weakens the bonding forces between lycopene and tissue matrix, thus making lycopene more accessible and enhancing the cis-isomerization. More information on lycopene bioavailability, however, is needed. The pharmacokinetic properties of lycopene remain particularly poorly understood. Further research on the bioavalability, pharmacology, biochemistry, and physiology must be done to reveal the mechanism of lycopene in human diet, and the in vivo metabolism of lycopene. Consumer demand for healthy food products provides an opportunity to develop lycopene-rich food as new functional foods, as well as food-grade and pharmaceutical-grade lycopene as new nutraceutical products. An industrial scale, environmentally friendly lycopene extraction and purification procedure with minimal loss of bioactivities is highly desirable for the foods, feed, cosmetic, and pharmaceutical industries. High-quality lycopene products that meet food safety regulations will offer potential benefits to the food industry.  相似文献   
997.
In bovine species, as in human, the pancreas predominantly expresses cholecystokinin-B (CCK-B)/gastrin receptors. However, the role of this receptor in the regulation of meal-stimulated pancreatic enzyme release has not been determined. In milk-fed calves, we previously described prandial patterns of exocrine pancreatic secretion and a long prefeeding phase was observed. The present study was aimed at determining both the role of external stimuli in the outset of the prefeeding phase and the implication of pancreatic CCK-A and CCK-B/gastrin receptors in the mediation of pancreatic response to feeding. The first objective was studied by suppressing external stimuli associated with food intake (unexpected meal) and the second by infusing highly specific and potent antagonists of CCK-A (SR 27897) and CCK-B/gastrin (PD 135158) receptors during the prandial period. When calves were given an unexpected meal, the long prefeeding increase in pancreatic secretion was absent. SR 27897 (but not PD 135158) inhibited the preprandial phase and greatly reduced postprandial pancreatic juice and enzyme outflows. The expectancy of a meal seemed to elicit an increased pancreatic response right before a meal and CCK-A receptors may mediate this information via neural pathways. The implication of CCK and CCK-A receptors in mediating the postfeeding pancreatic response was also demonstrated. The participation of CCK-B/gastrin receptors in this regulation was not demonstrated.  相似文献   
998.
The vagal neural crest is the origin of majority of neurons and glia that constitute the enteric nervous system, the intrinsic innervation of the gut. We have recently confirmed that a second region of the neuraxis, the sacral neural crest, also contributes to the enteric neuronal and glial populations of both the myenteric and the submucosal plexuses in the chick, caudal to the level of the umbilicus. Results from this previous study showed that sacral neural crest-derived precursors colonised the gut in significant numbers only 4 days after vagal-derived cells had completed their migration along the entire length of the gut. This observation suggested that in order to migrate into the hindgut and differentiate into enteric neurons and glia, sacral neural crest cells may require an interaction with vagal-derived cells or with factors or signalling molecules released by them or their progeny. This interdependence may also explain the inability of sacral neural crest cells to compensate for the lack of ganglia in the terminal hindgut of Hirschsprung's disease in humans or aganglionic megacolon in animals. To investigate the possible interrelationship between sacral and vagal-derived neural crest cells within the hindgut, we mapped the contribution of various vagal neural crest regions to the gut and then ablated appropriate sections of chick vagal neural crest to interrupt the migration of enteric nervous system precursor cells and thus create an aganglionic hindgut model in vivo. In these same ablated animals, the sacral level neural axis was removed and replaced with the equivalent tissue from quail embryos, thus enabling us to document, using cell-specific antibodies, the migration and differentiation of sacral crest-derived cells. Results showed that the vagal neural crest contributed precursors to the enteric nervous system in a regionalised manner. When quail-chick grafts of the neural tube adjacent to somites 1-2 were performed, neural crest cells were found in enteric ganglia throughout the preumbilical gut. These cells were most numerous in the esophagus, sparse in the preumbilical intestine, and absent in the postumbilical gut. When similar grafts adjacent to somites 3-5 or 3-6 were carried out, crest cells were found within enteric ganglia along the entire gut, from the proximal esophagus to the distal colon. Vagal neural crest grafts adjacent to somites 6-7 showed that crest cells from this region were distributed along a caudal-rostral gradient, being most numerous in the hindgut, less so in the intestine, and absent in the proximal foregut. In order to generate aneural hindgut in vivo, it was necessary to ablate the vagal neural crest adjacent to somites 3-6, prior to the 13-somite stage of development. When such ablations were performed, the hindgut, and in some cases also the cecal region, lacked enteric ganglionated plexuses. Sacral neural crest grafting in these vagal neural crest ablated chicks showed that sacral cells migrated along normal, previously described hindgut pathways and formed isolated ganglia containing neurons and glia at the levels of the presumptive myenteric and submucosal plexuses. Comparison between vagal neural crest-ablated and nonablated control animals demonstrated that sacral-derived cells migrated into the gut and differentiated into neurons in higher numbers in the ablated animals than in controls. However, the increase in numbers of sacral neural crest-derived neurons within the hindgut did not appear to be sufficiently high to compensate for the lack of vagal-derived enteric plexuses, as ganglia containing sacral neural crest-derived neurons and glia were small and infrequent. Our findings suggest that the neuronal fate of a relatively fixed subpopulation of sacral neural crest cells may be predetermined as these cells neither require the presence of vagal-derived enteric precursors in order to colonise the hindgut, nor are capable of dramatically altering their proliferation or d  相似文献   
999.
Using the basolateral mutant PS of the normally apical neurotrophin receptor p75 (p75NTR) we have identified two cytoplasmic determinants responsible for this reversed localization in the human intestinal cell line, Caco2. These signals are based on two consecutive leucines (322-323) and a tyrosine (Y308). Truncation of the cytoplasmic tail removing the two leucines or their replacement by alanines led to a nonpolarized expression of the resulting mutants in Caco2 cells. To our surprise, the same mutations had no effect on the basolateral localization of the mutant PS in MDCK cells. In MDCK cells, the basolateral localization was entirely dependent on a cytoplasmic tyrosine Y308, while in Caco-2 cells this tyrosine signal was functional as a basolateral signal only when the cytoplasmic domain of PS was truncated shortly after it. These data indicate for the first time that there is a differential recognition of basolateral signals between MDCK and Caco-2 cells.  相似文献   
1000.
We have analyzed by (31)P MRS the relationship between kinetic parameters of phosphocreatine (PCr) recovery and end-of-exercise status under conditions of moderate and large acidosis induced by dynamic exercise. Thirteen healthy subjects performed muscular contractions at 0.47 Hz (low frequency, moderate exercise) and 0.85 Hz (high frequency, heavy exercise). The rate constant of PCr resynthesis (k(PCr)) varied greatly among subjects (variation coefficients: 43 vs. 57% for LF vs. HF exercises) and protocols (k(PCr) values: 1.3+/-0.5 min(-1) vs. 0.9+/-0.5 min(-1) for LF vs. HF exercises, P<0.03). The large intersubject variability can be captured into a linear relationship between k(PCr), the amount of PCr consumed ([PCr(2)]) and pH reached at the end of exercise (pH(end)) (k(PCr)=-3.3+0.7 pH(end)-0.03 [PCr(2)]; P=0.0007; r=0.61). This dual relationship illustrates that mitochondrial activity is affected by end-of-exercise metabolic status and allows reliable comparisons between control, diseased and trained muscles. In contrast to k(PCr), the initial rate of PCr recovery and the maximum oxidative capacity were always constant whatever the metabolic conditions of end-of-exercise and can then be additionally used in the identification of dysfunctions in the oxidative metabolic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号