首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   20篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   13篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   15篇
  2012年   16篇
  2011年   20篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   26篇
  2006年   12篇
  2005年   9篇
  2004年   14篇
  2003年   11篇
  2002年   3篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有227条查询结果,搜索用时 843 毫秒
201.
202.

Background

Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.

Methodology/Principal Findings

We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.

Conclusions/Significance

Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.  相似文献   
203.
ADP ribosylation factors (Arfs) are small GTP-binding proteins known for their role in vesicular transport, where they nucleate the assembly of coat protein complexes at sites of carrier vesicle formation. Similar to other GTPases, Arfs require guanine nucleotide exchange factors to catalyze GTP loading and activation. One subfamily of ArfGEFs, the BRAGs, has been shown to activate Arf6, which acts in the endocytic pathway to control the trafficking of a subset of cargo proteins including integrins. We have previously shown that BRAG2 modulates cell adhesion by regulating integrin surface expression. Here, we show that, in addition to Arf6, endogenous BRAG2 also activates the class II Arfs, Arf4 and Arf5, and that surprisingly, it is Arf5 that mediates integrin internalization. We observed that cell spreading on fibronectin is enhanced upon inhibition of BRAG2 or Arf5 but not Arf6. Similarly, spreading in BRAG2-depleted cells is reverted by expression of a rapid cycling Arf5 mutant (T161A) but not by a corresponding Arf6 construct (T157A). We also show that BRAG2 binds clathrin and the AP-2 adaptor complex and that both BRAG2 and Arf5 localize to clathrin-coated pits at the plasma membrane. Consistent with these observations, depletion of Arf5, but not Arf6 or Arf4, slows internalization of β1 integrins without affecting transferrin receptor uptake. Together, these findings indicate that BRAG2 acts at clathrin-coated pits to promote integrin internalization by activating Arf5 and suggest a previously unrecognized role for Arf5 in clathrin-mediated endocytosis of specific cargoes.  相似文献   
204.
We report on the synthesis and the study of the structure-activity relationship of novel 9-norbornyl-6-chloropurine derivatives, which exert selective antiviral activity on the replication of Coxsackievirus B3. In particular, the synthetic approaches towards norbornyl derivatives bearing diverse side chains were studied. The main goal of the study was to determine the influence of the norbornane moiety substitution at positions 5' and 6' on selective antiviral activity with special regard to the liphophilicity profile of the substituent.  相似文献   
205.
206.
The unimodal species richness-altitude distribution pattern seems to be universal. To investigate the validity of this phenomenon in homogeneous substrate and vegetation conditions, we sampled beech-dominated forests in five volcanic mountain ranges in the Western Carpathians. European beech (Fagus sylvatica L.) formed monodominant closed-canopy stands at altitudes from 300 to 1,200 m. Along this gradient, the influence of beech on understory plant species richness was expected to be strong and uniform. The shape of the species richness-altitude relationship was analyzed for three datasets: herb layer, shrub layer, and both layers merged together. Contrary to prediction, the studied species richness-altitude relationship was inversely unimodal, with a minimum at intermediate altitudes. Quadratic regression models were statistically significant for all three datasets (P<0.001) and the explained variability ranged from 12 % to 20 %. The possible explanation for the observed pattern is twofold. In the central part of the altitudinal gradient, low species richness is due to strong competition by monodominant beech with accumulation of leaf litter and uptake soil resources, mainly water. This influence is somewhat released towards the margins of the gradient. Secondly, the species pool from the neighbouring communities increases species richness only in the lower parts of the altitudinal gradient.  相似文献   
207.
208.
We report on a series of novel 5,6-disubstituted uracils with significant inhibitory activity against human and Escherichia coli thymidine phosphorylases. Bis-uracil conjugates were identified as the most potent inhibitors of TPs in this study.  相似文献   
209.
The adenylate cyclase toxin‐haemolysin of Bordetella (CyaA) targets CD11b+ myeloid phagocytes and translocates across their cytoplasmic membrane an adenylate cyclase (AC) enzyme that catalyses conversion of cytosolic ATP into cAMP. In parallel, CyaA acts as a cytolysin forming cation‐selective pores, which permeabilize cell membrane and eventually provoke cell lysis. Using cytolytic activity, potassium efflux and patch‐clamp assays, we show that a combination of substitutions within the pore‐forming (E570Q) and acylation‐bearing domain (K860R) ablates selectively the cell‐permeabilizing activity of CyaA. At the same time, however, the capacity of such mutant CyaA to translocate the AC domain across cytoplasmic membrane into cytosol of macrophage cells and to elevate cellular cAMP concentrations remained intact. Moreover, the combination of E570Q+K860R substitutions suppressed the residual cytolytic activity of the enzymatically inactive CyaA/OVA/AC toxoid on CD11b‐expressing monocytes, while leaving unaffected the capacity of the mutant toxoid to deliver in vitro a reporter CD8+ T cell epitope from ovalbumin (OVA) to the cytosolic pathway of dendritic cells for MHC class I‐restricted presentation and induce in vivo an OVA‐specific cytotoxic T cell response. CyaA, hence, employs a mechanism of AC enzyme domain translocation across cellular membrane that avoids passage across the cytolytic pore formed by toxin oligomers.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号