首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39212篇
  免费   2701篇
  国内免费   4篇
  2023年   266篇
  2022年   389篇
  2021年   836篇
  2020年   621篇
  2019年   831篇
  2018年   1218篇
  2017年   1120篇
  2016年   1506篇
  2015年   1725篇
  2014年   1926篇
  2013年   2672篇
  2012年   3163篇
  2011年   3225篇
  2010年   2025篇
  2009年   1511篇
  2008年   2083篇
  2007年   1965篇
  2006年   1900篇
  2005年   1534篇
  2004年   1444篇
  2003年   1342篇
  2002年   1191篇
  2001年   670篇
  2000年   727篇
  1999年   587篇
  1998年   417篇
  1997年   283篇
  1996年   275篇
  1995年   283篇
  1994年   193篇
  1993年   194篇
  1992年   288篇
  1991年   247篇
  1990年   206篇
  1989年   205篇
  1988年   161篇
  1987年   197篇
  1986年   164篇
  1985年   162篇
  1984年   183篇
  1983年   135篇
  1982年   142篇
  1981年   126篇
  1980年   115篇
  1979年   125篇
  1978年   101篇
  1977年   91篇
  1975年   82篇
  1974年   105篇
  1973年   85篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
In an attempt to unveil the origin of neo‐sex chromosomes in Ronderosia Cigliano grasshoppers, we performed a combined phylogenetic analysis based on morphological (external morphology and male genitalia) and molecular data (COI, COII, 16S and ITS2) to explore the chromosome evolution within the genus. We also analysed the distributional patterns of the various Ronderosia species and considered the possible role of chromosome rearrangements (CRs) in speciation processes within the genus in the light of ‘suppressed‐recombination’ models. We mapped the states of three chromosomal characters on the combined tree topology. The combined evidence supported Ronderosia as a monophyletic group. The cytogenetic analyses of the genus demonstrated the importance of rearranged karyotypes with single, complex and multiples neo‐sex chromosome determination systems in all species. The chromosome character optimisation suggests X‐autosome centric fusion as the mechanism responsible for neo‐sex chromosome formation in most Ronderosia species, except in R. dubia and R. bergii. Similar autosomes were involved in fusions with the ancestral X chromosome in Ronderosia, supporting previous hypotheses on the unique origin of X‐autosome fusion for the sex chromosome in the genus. As a source of chromosome variation, autosome‐autosome centric fusion played a secondary role in Ronderosia compared with other Dichroplini. Given the homogeneity in the morphological features, the sympatric distribution of closely related species and the intrinsic property of centric fusion as suppressors of the crossing over, we suggest that CRs may have played a key role during the speciation process within Ronderosia.  相似文献   
32.
Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.  相似文献   
33.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   
34.
35.
Forty-five populations of Pentanema corresponding to seven species included in the Pentanema conyzae clade have been studied using AFLP fingerprinting. The results show that allopolyploidization could have been involved in the diversification of this group, specifically in species P. langeanum and P. maletii. Molecular data confirm the presence of P. britannicum in the Iberian Peninsula and key steps are provided to identify the species that are morphologically the most challenging.  相似文献   
36.
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号