首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   20篇
  国内免费   1篇
  2023年   3篇
  2022年   3篇
  2021年   11篇
  2020年   14篇
  2019年   9篇
  2018年   12篇
  2017年   6篇
  2016年   11篇
  2015年   20篇
  2014年   16篇
  2013年   30篇
  2012年   26篇
  2011年   33篇
  2010年   21篇
  2009年   25篇
  2008年   30篇
  2007年   29篇
  2006年   20篇
  2005年   14篇
  2004年   20篇
  2003年   16篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1977年   2篇
  1976年   3篇
排序方式: 共有410条查询结果,搜索用时 234 毫秒
371.
Inhibitors of the mevalonate pathway, including the highly prescribed statins, reduce the production of cholesterol and isoprenoids such as geranylgeranyl pyrophosphates. The Rho family of small guanine triphosphatases (GTPases) requires isoprenylation, specifically geranylgeranylation, for activation. Because Rho GTPases are primary regulators of actin filament rearrangements required for process extension, neurite arborization, and synaptic plasticity, statins may affect cognition or recovery from nervous system injury. Here, we assessed how manipulating geranylgeranylation affects neurite initiation, elongation, and branching in neuroblastoma growth cones. Treatment with the statin, lovastatin (20 μM), decreased measures of neurite initiation by 17.0 to 19.0 % when a source of cholesterol was present and increased neurite branching by 4.03- to 9.54-fold (regardless of exogenous cholesterol). Neurite elongation was increased by treatment with lovastatin only in cholesterol-free culture conditions. Treatment with lovastatin decreased growth cone actin filament content by up to 24.3 %. In all cases, co-treatment with the prenylation precursor, geranylgeraniol (10 μM), reversed the effect of lovastatin. In a prior work, statin effects on outgrowth were linked to modulating the actin depolymerizing factor, cofilin. In our assays, treatment with lovastatin or geranylgeraniol decreased cofilin phosphorylation in whole cell lysates. However, lovastatin increased cofilin phosphorylation in cell bodies and decreased it in growth cones, indicating differential regulation in specific cell regions. Together, we interpret these data to suggest that protein geranylgeranylation likely regulates growth cone actin filament content and subsequent neurite outgrowth through mechanisms that also affect actin nucleation and polymerization.  相似文献   
372.
Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner with a role for virtually every amino acid. In this study, we demonstrated that the coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is unusually tolerant of extensive deletions, with continued virion assembly and/or systemic infection found after extensive deletions are made. A series of deletion and point mutations was created in the CP cistron of wild-type and/or green fluorescent protein-tagged WSMV, and the effects of these mutations on cell-to-cell and systemic transport and virion assembly of WSMV were examined. Mutants with overlapping deletions comprising N-terminal amino acids 6 to 27, 36 to 84, 85 to 100, 48 to 100, and 36 to 100 or the C-terminal 14 or 17 amino acids systemically infected wheat with different efficiencies. However, mutation of conserved amino acids in the core domain, which may be involved in a salt bridge, abolished virion assembly and cell-to-cell movement. N-terminal amino acids 6 to 27 and 85 to 100 are required for efficient virion assembly and cell-to-cell movement, while the C-terminal 65 amino acids are dispensable for virion assembly but are required for cell-to-cell movement, suggesting that the C terminus of CP functions as a dedicated cell-to-cell movement determinant. In contrast, amino acids 36 to 84 are expendable, with their deletion causing no obvious effects on systemic infection or virion assembly. In total, 152 amino acids (amino acids 6 to 27 and 36 to 100 and the 65 amino acids at the C-terminal end) of 349 amino acids of CP are dispensable for systemic infection and/or virion assembly, which is rare for multifunctional viral CPs.  相似文献   
373.
A look back at the early literature on reactive oxygen species (ROS) gives the impression that these small inorganic molecules had a singular defined role, that of host defence in mammalian systems. However, it is now known that their roles also include a major part in cell signalling, in a broad range of organisms from mammals to plants. Similarly, a look back at papers on the proteins now thought to be involved in the perception of hydrogen peroxide (H(2)O(2)) will show that they too had defined functions assigned to them, completely independent to H(2)O(2) signalling. These proteins have disparate roles, in ethylene perception or even major metabolic pathways such as glycolysis. However, the chemistry of H(2)O(2) sensing dictates that the proteins have a commonality, with active thiol groups being potential ROS targets. The challenge now is to determine the full range of proteins which may partake in the role of H(2)O(2) perception, and to determine the mechanisms by which the signal is transmitted to the next players in the signal transduction pathways.  相似文献   
374.
Preface to Nitric Oxide Signalling: Plant Growth and Development   总被引:3,自引:0,他引:3  
Interest in nitric oxide (NO) as an endogenous and potent regulatorof plant growth and development has grown exponentially in thelast few years. The Focus Section in this issue of Journal ofExperimental Botany (JXB) contains six papers based on invitedtalks from a session held at the Society for Experimental Biology(SEB) Annual Meeting in Barcelona, Spain, in  相似文献   
375.
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a 19.3-kb positive-stranded RNA genome that is organized into 12 open reading frames (ORFs) with the 10 3' genes expressed via a nested set of nine or ten 3'-coterminal subgenomic mRNAs (sgRNAs). Relatively large amounts of negative-stranded RNAs complementary to both genomic and sgRNAs accumulate in infected cells. As is characteristic of RNA viruses, wild-type CTV produced more positive than negative strands, with the plus-to-minus ratios of genomic and sgRNAs estimated at 10 to 20:1 and 40 to 50:1, respectively. However, a mutant with all of the 3' genes deleted replicated efficiently, but produced plus to minus strands at a markedly decreased ratio of 1 to 2:1. Deletion analysis of 3'-end genes revealed that the p23 ORF was involved in asymmetric RNA accumulation. A mutation which caused a frameshift after the fifth codon resulted in nearly symmetrical RNA accumulation, suggesting that the p23 protein, not a cis-acting element within the p23 ORF, controls asymmetric accumulation of CTV RNAs. Further in-frame deletion mutations in the p23 ORF suggested that amino acid residues 46 to 180, which contained RNA-binding and zinc finger domains, were indispensable for asymmetrical RNA accumulation, while the N-terminal 5 to 45 and C-terminal 181 to 209 amino acid residues were not absolutely required. Mutation of conserved cysteine residues to alanines in the zinc finger domain resulted in loss of activity of the p23 protein, suggesting involvement of the zinc finger in asymmetric RNA accumulation. The absence of p23 gene function was manifested by substantial increases in accumulation of negative-stranded RNAs and only modest decreases in positive-stranded RNAs. Moreover, the substantial decrease in the accumulation of negative-stranded coat protein (CP) sgRNA in the presence of the functional p23 gene resulted in a 12- to 15-fold increase in the expression of the CP gene. Apparently the excess negative-stranded sgRNA reduces the availability of the corresponding positive-stranded sgRNA as a messenger. Thus, the p23 protein controls asymmetric accumulation of CTV RNAs by downregulating negative-stranded RNA accumulation and indirectly increases expression of 3' genes.  相似文献   
376.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   
377.
Fusarium wilt is a widespread and serious chickpea disease caused by the soil-borne fungus Fusarium oxysporum f.sp. ciceri (Foc). We evaluated an F9 recombinant inbred line population of chickpea for resistance to three Foc races (1, 2 and 3) in pot culture experiments and identified flanking and tightly linked DNA markers for the resistance genes. The simple sequence repeat markers H3A12 and TA110 flanked the Foc1 locus at 3.9 and 2.1 cM, respectively, while Foc2 was mapped 0.2 cM from TA96 and 2.7 cM from H3A12. The H1B06y and TA194 markers flanked the Foc3 locus at 0.2 and 0.7 cM, respectively. These markers were also validated using 16 diverse chickpea genotypes. Identification of tightly linked flanking markers for wilt resistance genes will be useful for their exploitation in breeding programs and to understand the mechanism of resistance and evolution of the genes. S. J. M. Gowda and P. Radhika contributed equally to this study.  相似文献   
378.
Lamellipodial protrusion is regulated by Ena/VASP proteins. We identified Lamellipodin (Lpd) as an Ena/VASP binding protein. Both proteins colocalize at the tips of lamellipodia and filopodia. Lpd is recruited to EPEC and Vaccinia, pathogens that exploit the actin cytoskeleton for their own motility. Lpd contains a PH domain that binds specifically to PI(3,4)P2, an asymmetrically localized signal in chemotactic cells. Lpd's PH domain can localize to ruffles in PDGF-treated fibroblasts. Lpd overexpression increases lamellipodial protrusion velocity, an effect observed when Ena/VASP proteins are overexpressed or artificially targeted to the plasma membrane. Conversely, knockdown of Lpd expression impairs lamellipodia formation, reduces velocity of residual lamellipodial protrusion, and decreases F-actin content. These phenotypes are more severe than loss of Ena/VASP, suggesting that Lpd regulates other effectors of the actin cytoskeleton in addition to Ena/VASP.  相似文献   
379.
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1alpha in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues.  相似文献   
380.
Plasmonics - We present a systematic computational study on the optical properties of a new composite structure based on ZnS–metal core-shell particles, which can find applications in light...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号