全文获取类型
收费全文 | 425篇 |
免费 | 20篇 |
国内免费 | 1篇 |
专业分类
446篇 |
出版年
2023年 | 3篇 |
2022年 | 5篇 |
2021年 | 12篇 |
2020年 | 14篇 |
2019年 | 10篇 |
2018年 | 10篇 |
2017年 | 7篇 |
2016年 | 13篇 |
2015年 | 18篇 |
2014年 | 15篇 |
2013年 | 30篇 |
2012年 | 28篇 |
2011年 | 36篇 |
2010年 | 24篇 |
2009年 | 27篇 |
2008年 | 32篇 |
2007年 | 33篇 |
2006年 | 24篇 |
2005年 | 16篇 |
2004年 | 22篇 |
2003年 | 16篇 |
2002年 | 14篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1977年 | 2篇 |
1976年 | 3篇 |
1974年 | 1篇 |
排序方式: 共有446条查询结果,搜索用时 15 毫秒
141.
John T Hancock Dan Henson Mukanthu Nyirenda Radhika Desikan Judith Harrison Mervyn Lewis Jenna Hughes Steven J Neill 《Plant Physiology and Biochemistry》2005,43(9):828-835
Hydrogen peroxide (H2O2) is now recognised as a key signalling molecule in eukaryotes. In plants, H2O2 is involved in regulating stomatal closure, gravitropic responses, gene expression and programmed cell death. Although several kinases, such as oxidative signal-inducible 1 (OXI1) kinase and mitogen-activated protein kinases are known to be activated by exogenous H2O2, little is known about the proteins that directly react with H2O2. Here, we utilised a proteomic approach, using iodoacetamide-based fluorescence tagging of proteins in conjunction with mass spectrometric analysis, to identify several proteins that might be potential targets of H2O2 in the cytosolic fraction of Arabidopsis thaliana, the most prominent of which was cytosolic glyceraldehyde 3-phosphate dehydrogenase (cGAPDH; EC 1.2.1.12). cGAPDH from Arabidopsis is inactivated by H2O2 in vitro, and this inhibition is reversible by the subsequent addition of reductants such as reduced glutathione (GSH). It has been suggested recently that Arabidopsis GAPDH has roles outside of its catalysis as part of glycolysis, while in other systems this includes that of mediating reactive oxygen species (ROS) signalling. Here, we suggest that cGAPDH in Arabidopsis might also have such a role in mediating ROS signalling in plants. 相似文献
142.
Blanchard V Gadkari RA Gerwig GJ Leeflang BR Dighe RR Kamerling JP 《Glycoconjugate journal》2007,24(1):33-47
Human chorionic gonadotropin (hCG) is a heterodimeric, placental glycoprotein hormone involved in the maintenance of the corpus
luteum during the first trimester of pregnancy. Biologically active hCG has been successfully expressed in the yeast Pichia pastoris (phCG). In the context of structural studies and therapeutic applications of phCG, detailed information about its glycosylation
pattern is a prerequisite. To this end N-glycans were released with peptide-N
4-(N-acetyl-β-glucosaminyl)asparagine amidase F and fractionated via anion-exchange chromatography (Resource Q) yielding both
neutral (80%) and charged, phosphate-containing (20%) high-mannose-type structures. Subfractionations were carried out via
normal phase (Lichrosorb-NH2) and high-pH anion-exchange (CarboPac PA-1) chromatography. Structural analyses of the released N-glycans were carried out
by using HPLC profiling of fluorescent 2-aminobenzamide derivatives, MALDI-TOF mass spectrometry, and 500-MHz 1H-NMR spectroscopy. Detailed neutral oligosaccharide structures, in the range of Man8GlcNAc2 to Man11GlcNAc2 including molecular isomers, could be established, and structures up to Man15GlcNAc2 were indicated. Phosphate-containing oligosaccharides ranged from Man9
PGlcNAc2 to Man13
PGlcNAc2. Mannosyl O-glycans were not detected. Profiling studies carried out on different production batches showed that the oligosaccharide
structures are similar, but their relative amounts varied with the culturing media. 相似文献
143.
OBJECTIVE: To analyze neutrophilic phagocytosis by tumor cells in fine needle aspirate (FNA) smears from different types of tumor. STUDY DESIGN: A retrospective review of a total of 7 cases showing prominent neutrophilic phagocytosis by tumor cells in FNA smears during the period July 2003-December 2004. RESULTS: This feature was seen in malignant fibrous histiocytoma and poorly differentiated renal cell carcinoma in addition to giant cell carcinoma of the lung. CONCLUSION: Neutrophilic phagocytosis by tumor cells is seen in FNA smears and on cytomorphology. The differential diagnoses should include both pleomorphic sarcomas and carcinomas. 相似文献
144.
Human thyroid cells in culture take up and organify (125)I when cultured in TSH (acting through cAMP) and insulin. They also secrete urokinase (uPA) and tissue-type (tPA) plasminogen activators (5-100 IU/10(6)cells/day). TSH and insulin both decreased secreted PA activity (PAA), uPA and tPA protein and their mRNAs. Autocrine fibroblast growth factor increased secreted PAA and inhibited thyroid cell (125)I uptake. Epidermal growth factor (EGF) and the protein kinase C (PKC) activator, TPA significantly increased PAA and inhibited thyroid differentiated function, (TPA > EGF). For TPA, effects were rapid, increased PAA secretion and decreased (125)I uptake being seen at 4 h whereas for EGF, a 24 h incubation was required. qRT-PCR showed significantly increased mRNA expression of uPA with lesser effects on tPA. Aprotinin, which inhibits PAA, increased (125)I uptake but did not abrogate the effects of TPA and EGF. The MEKK inhibitor, PD98059 partially reversed the effects of EGF and TPA on PAA, and largely reversed the effects of EGF but not TPA on differentiated function. PKC inhibitors bisindoylmaleimide 1, and the specific PKCbeta inhibitor, LY379196 completely reversed the effects of TPA on (125)I uptake and PAA whereas EGF effects were unaffected. TPA inhibited follicle formation and this effect was blocked by LY379196 but not PD98059. We conclude that in thyroid cells, MAPK activation inversely correlates with (125)I uptake and directly correlates with PA expression, in contrast to the effects of cAMP. TPA effects on iodide metabolism, dissolution of follicles and uPA synthesis are mediated predominantly through PKCbeta whereas EGF exerts its effects through MAPK but not PKCbeta. 相似文献
145.
146.
Nitric oxide signalling in plants 总被引:13,自引:0,他引:13
147.
Ankit B. Patel William T. Gibson Matthew C. Gibson Radhika Nagpal 《PLoS computational biology》2009,5(6)
The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate “signature” equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms. 相似文献
148.
Cellular cytoskeletal remodeling reflects alterations in local biochemical and mechanical changes in terms of stress that
manifests relocation of signaling molecules within and across the cell. Although stretching due to load and chemical changes
by high homocysteine (HHcy) causes cytoskeletal re-arrangement, the synergism between stretch and HHcy is unclear. We investigated
the contribution of HHcy in cyclic stretch-induced focal adhesion (FA) protein redistribution leading to cytoskeletal re-arrangement
in mouse aortic endothelial cells (MAEC). MAEC were subjected to cyclic stretch (CS) and HHcy alone or in combination. The
redistribution of FA protein, and small GTPases were determined by Confocal microscopy and Western blot techniques in membrane
and cytosolic compartments. We found that each treatment induces focal adhesion kinase (FAK) phosphorylation and cytoskeletal
actin polymerization. In addition, CS activates and membrane translocates small GTPases RhoA with minimal effect on Rac1,
whereas HHcy alone is ineffective in both GTPases translocation. However, the combined effect of CS and HHcy activates and
membrane translocates both GTPases. Free radical scavenger NAC (N-Acetyl-Cysteine) inhibits CS and HHcy-mediated FAK phosphorylation
and actin stress fiber formation. Interestingly, CS also activates and membrane translocates another FA protein, paxillin
in HHcy condition. Cytochalasin D, an actin polymerization blocker and PI3-kinase inhibitor Wortmannin inhibited FAK phosphorylation
and membrane translocation of paxillin suggesting the involvement of PI3K pathway. Together our results suggest that CS- and
HHcy-induced oxidative stress synergistically contribute to small GTPase membrane translocation and focal adhesion protein
redistribution leading to endothelial remodeling. 相似文献
149.
The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid turnover at the plasma membrane in various cell types. The ubiquitously expressed N-WASP promotes actin polymerization and regulates endocytic trafficking of other proteins in response to signaling molecules such as Rho-GTPases. In the present study we investigated the effects of wiskostatin, an N-WASP inhibitor, on the surface expression and activity of CFTR. We demonstrate, using surface biotinylation methods, that the steady-state surface CFTR pool in stably transfected BHK cells was dramatically decreased following wiskostatin treatment with a corresponding increase in the amount of intracellular CFTR. Similar effects were observed for latrunculin B, a specific actin-disrupting reagent. Both reagents strongly inhibited macroscopic CFTR-mediated Cl(-) currents in two cell types including HT29-Cl19A colonic epithelial cells. As previously reported, CFTR internalization from the cell surface was strongly inhibited by a cyclic-AMP cocktail. This effect of cyclic-AMP was only partially blunted in the presence of wiskostatin, which raises the possibility that these two factors modulate different steps in CFTR traffic. In kinetic studies wiskostatin appeared to accelerate the initial rate of CFTR endocytosis as well as inhibit its recycling back to the cell surface over longer time periods. Our studies implicate a role for N-WASP-mediated actin polymerization in regulating CFTR surface expression and channel activity. 相似文献
150.
Methylated Cytokinins from the Phytopathogen Rhodococcus fascians Mimic Plant Hormone Activity 总被引:1,自引:0,他引:1
Venkatesan Radhika Nanae Ueda Yuuri Tsuboi Mikiko Kojima Jun Kikuchi Takuji Kudo Hitoshi Sakakibara 《Plant physiology》2015,169(2):1118-1126
Cytokinins (CKs), a class of phytohormones that regulate plant growth and development, are also synthesized by some phytopathogens to disrupt the hormonal balance and to facilitate niche establishment in their hosts. Rhodococcus fascians harbors the fasciation (fas) locus, an operon encoding several genes homologous to CK biosynthesis and metabolism. This pathogen causes unique leafy gall symptoms reminiscent of CK overproduction; however, bacterial CKs have not been clearly correlated with the severe symptoms, and no virulence-associated unique CKs or analogs have been identified. Here, we report the identification of monomethylated N6-(∆2-isopentenyl)adenine and dimethylated N6-(∆2-isopentenyl)adenine (collectively, methylated cytokinins [MeCKs]) from R. fascians. MeCKs were recognized by a CK receptor and up-regulated type-A ARABIDOPSIS THALIANA RESPONSE REGULATOR genes. Treatment with MeCKs inhibited root growth, a hallmark of CK action, whereas the receptor mutant was insensitive. MeCKs were retained longer in planta than canonical CKs and were poor substrates for a CK oxidase/dehydrogenase, suggesting enhanced biological stability. MeCKs were synthesized by S-adenosyl methionine-dependent methyltransferases (MT1 and MT2) that are present upstream of the fas genes. The best substrate for methylation was isopentenyl diphosphate. MT1 and MT2 catalyzed distinct methylation reactions; only the MT2 product was used by FAS4 to synthesize monomethylated N6-(∆2-isopentenyl)adenine. The MT1 product was dimethylated by MT2 and used as a substrate by FAS4 to produce dimethylated N6-(∆2-isopentenyl)adenine. Chemically synthesized MeCKs were comparable in activity. Our results strongly suggest that MeCKs function as CK mimics and play a role in this plant-pathogen interaction.The balance of phytohormones, such as cytokinins (CKs) and auxins, is finely controlled to maintain proper plant growth and development but is often disturbed following pathogen infection (Robert-Seilaniantz et al., 2007; Pieterse et al., 2012). As a virulence strategy, many phytopathogens synthesize phytohormones that cause aberrant organogenesis and modulate primary carbon metabolism that ultimately aids disease establishment (Jameson, 2000; Robert-Seilaniantz et al., 2007). For several pathogens, CK production is essential for virulence, and they carry genes for CK biosynthesis in a harbored plasmid (Jameson, 2000). Fungal pathogens employ CKs to form green islands with delayed senescence, whereas bacterial pathogens develop gall structures (Sakakibara et al., 2005; Walters et al., 2008; Giron et al., 2013). Rhodococcus fascians is a gram-positive actinomycete that causes symptoms ranging from leaf deformation to differentiated shooty outgrowths known as leafy galls in more than 150 different plant species (Goethals et al., 2001; Stes et al., 2011). In ornamental plants, such infections reduce their value and contribute to economic losses worldwide (Putnam and Miller, 2007). Leafy gall symptoms are reminiscent of CK overproduction and can be partially induced by exogenous application of CKs (Thimann and Sachs, 1966; Eason et al., 1996). Although several CKs have been isolated from R. fascians culture filtrates, a clear correlation with pathogenesis is lacking partially owing to the low concentration of bacterial CKs (Eason et al., 1996). A synergistic action by a mixture of bacterially produced CKs has been proposed, leading to persistent accumulation of CKs locally (Pertry et al., 2009). Nevertheless, to date, no virulence-associated CK analogs have been identified that could contribute to the infection symptoms.Naturally occurring CKs are adenine derivatives with different side chains at the N6 position. Major plant CKs are N6-prenylated adenine derivatives such as N6-(Δ2-isopentenyl)adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin, collectively known as isoprenoid CKs (Sakakibara, 2006). Among them, iP and tZ are the major CKs in Arabidopsis (Arabidopsis thaliana). iP is synthesized by adenosine phosphate-isopentenyl transferase (IPT) using dimethylallyl diphosphate (DMAPP) and adenosine phosphate as substrates (Sakakibara, 2006). tZ is formed by hydroxylation of the trans-end of the prenyl side chain of the iP nucleotide. CK homeostasis is governed by both biosynthesis and catabolism and has an important regulatory role in plant growth (Sakakibara, 2006; Werner et al., 2006). CK oxidase/dehydrogenase (CKX) is responsible for an irreversible reaction cleaving the unsaturated isoprenoid side chain that results in the formation of adenine and the corresponding aldehyde (Werner et al., 2006). In Arabidopsis, CKs are perceived by a subset of sensory His kinases, ARABIDOPSIS HIS KINASE2 (AHK2) to AHK4, which undergo a His-Asp phosphorelay leading to induction of direct target genes including type-A ARABIDOPSIS RESPONSE REGULATOR (ARR) genes (Kieber and Schaller, 2010). This two-component signaling system has been implicated in mediating basal and pathogen-induced plant immunity (Choi et al., 2010; Argueso et al., 2012). For instance, infection of Arabidopsis plants by R. fascians reportedly activates type-A ARR5 expression with increased expression of AHK3 and AHK4, resulting in mitotic cell divisions that arrest the infected leaves in a meristematic state to establish a nutrient-rich niche (Depuydt et al., 2008, 2009; Pertry et al., 2010; Stes et al., 2011). As the infection progresses, IPT genes are switched off, whereas the expression of all CKX genes are strongly induced in symptomatic tissues (Depuydt et al., 2008).The virulence determinant of R. fascians is located within the fasciation (fas) locus, an operon encoding several genes involved in CK metabolism, indicating that CKs are essential for this plant-pathogen interaction (Stes et al., 2011). fas4 encodes IPT that catalyzes the rate-limiting step of CK biosynthesis and is vital for virulence (Stes et al., 2013). Interestingly, two methyltransferase-like genes are present upstream of the fas gene, whose functions have been unknown. Despite the presence of the fas genes in R. fascians, fewer known CKs have been detected compared with other gall-causing pathogens such as Pantoea agglomerans, Agrobacterium tumefaciens, and Pseudomonas savastanoi (Goethals et al., 2001). Further, the leafy gall phenotype is unique, not invoked by any of the above-mentioned pathogens, implying that the virulence of R. fascians might not be due to typical CKs alone (Goethals et al., 2001). R. fascians has long been hypothesized to produce CK analogs using similar or modified substrates (Goethals et al., 2001; Galis et al., 2005; Stes et al., 2011), but no such molecules have been discovered so far. Here, we report the identification and mode of biosynthesis for methylated cytokinins (MeCKs) as hormone mimics from R. fascians. These compounds are synthesized by two methyltransferases and FAS4. Their CK-like activity and higher in planta stability suggest a role for the methylated analogs as CK mimics that foster efficient pathogenesis. 相似文献