首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   16篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   14篇
  2019年   9篇
  2018年   10篇
  2017年   6篇
  2016年   11篇
  2015年   16篇
  2014年   13篇
  2013年   30篇
  2012年   24篇
  2011年   32篇
  2010年   21篇
  2009年   25篇
  2008年   29篇
  2007年   28篇
  2006年   20篇
  2005年   14篇
  2004年   19篇
  2003年   14篇
  2002年   14篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1977年   2篇
  1976年   3篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
101.
This study is an attempt to gain a better understanding of the physicochemical interaction between novel anticancer drugs and DNA bases. We have employed quantum chemical tools to explore the interaction of a few anticancer drugs [namely procarbazine (PR), dacarbazine (DC) and triethylenemelamine (TR)] with isolated normal (GC and AT) and mismatch (AA, CC, GG and TT) base pairs. The molecular geometries, electronic structural stability, vibrational energies, chemical reactivity and other electronic properties were studied using MP2/6-311+G**, B3LYP/6-311+G** and M05-2X/6-311+G** methods. The optimised geometries of the usual and mismatch base pairs are almost planar whereas the geometries of drug-interacting complexes deviate from planarity. The presence of steric hindrance and π-bond overlaps between C–C bonds in the complexes has distorted the planarity of the four- and five-member rings in the base pairs. Among the three drugs chosen, DC and PR bond well with normal and mismatch base pairs with large interaction energy. The electron density (ED) difference maps of the most stable GG–DC, GG–PR and GG–TR drug-interacting complexes show the information about sharing of ED and gain or loss of ED within the interacting molecules. The stabilisation energy of the charge transfer interaction between the relevant donor–acceptor orbital of GG–DC and GC–DC complexes has been found to be around 16 kcal/mol and GG–PR and GC–PR complexes has been found to be around 12 kcal/mol. But, for the GG–TR and GC–TR complexes, the stabilisation energy is found to be less than 6 kcal/mol. Moreover, the topological analysis of hydrogen bond network of DC and PR drug-interacting complexes have high electron and Laplacian density with structural stability at the bond critical points (BCPs), while compared TR drug-interacting complexes by atoms in molecules and natural bond orbital analysis. Finally, we may conclude that the drugs DC and PR are highly efficient drugs to target normal and mismatch base pair for control and inhibition of DNA replication.  相似文献   
102.
103.
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.  相似文献   
104.

Background

Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14 knockout studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling, in a tissue specific manner. Retinal cells are post-mitotic tissue, and insulin receptor (IR) activation is essential for retinal neuron survival. Retinal cells express protein tyrosine phosphatase-1B (PTP1B), which dephosphorylates IR and Grb14, a pseudosubstrate inhibitor of IR. This project asks the following major question: in retinal neurons, how does the IR overcome inactivation by PTP1B and Grb14?

Results

Our previous studies suggest that ablation of Grb14 results in decreased IR activation, due to increased PTP1B activity. Our research propounds that phosphorylation in the BPS region of Grb14 inhibits PTP1B activity, thereby promoting IR activation. We propose a model in which phosphorylation of the BPS region of Grb14 is the key element in promoting IR activation, and failure to undergo phosphorylation on Grb14 leads to both PTP1B and Grb14 exerting their negative roles in IR. Consistent with this hypothesis, we found decreased phosphorylation of Grb14 in diabetic type 1 Ins2Akita mouse retinas. Decreased retinal IR activation has previously been reported in this mouse line.

Conclusions

Our results suggest that phosphorylation status of the BPS region of Grb14 determines the positive or negative role it will play in IR signaling.
  相似文献   
105.
106.
107.
108.
Hepatocellular carcinoma (HCC) is a prototype tumor wherein angiogenesis plays a vital role in its progression. The role of VEGF, a major angiogenic factor in HCC is known; however, the role of anti-angiogenic factors simultaneously with the angiogenic factors has not been studied before. Hence, in this study, the serum levels of major angiogenic [Vascular Endothelial Growth Factor (VEGF), angiopoietin-2 (Ang-2)] and anti-angiogenic (endostatin, angiostatin) factors were analyzed and correlated with clinico-radiological features and with outcome. A total of 150 patients (50 HCC, 50 cirrhosis and 50 chronic hepatitis) and 50 healthy controls were enrolled in this study. Serum levels of VEGF, Ang-2, endostatin, and angiostatin were estimated by enzyme-linked immunosorbent assay. HCC shows significantly elevated serum levels of angiogenic factors VEGF and Ang-2 and of anti-angiogenic factors endostatin and angiostatin. ROC curve analysis for serum VEGF yielded an optimal cut-off value of 225.14 pg/ml, with a sensitivity of 78 % and specificity of 84.7 % for a diagnosis of HCC and its distinction from other group. Using this value, the univariate and multivariate analysis revealed significantly poor outcome in patients with higher levels of serum VEGF (p = 0.009). Combinatorial analysis revealed that patients with higher levels of both angiogenic and anti-angiogenic factors showed poor outcome. Serum VEGF correlates with poor survival of HCC patients and, therefore, serves as a non-invasive biomarker of poor prognosis. Moreover, elevated levels of anti-angiogenic factors occur endogenously in HCC patients.  相似文献   
109.
Abstract

An extracellular, hydrophilic, thermostable phytotoxin was purified to homogeneity from culture fluids of Ganoderma lucidum. The phytotoxin was purified by solvent extraction, gel filtration on Sephadex G-75. Toxicity was evaluated with detached leaf sheath and electrolyte leakage bioassays. Purified phytotoxin induced visible symptoms of the disease, when applied to coconut leaves, fronds and roots even at a low concentration. The toxin is a glycoprotein with carbohydrate as the major component. The importance of the carbohydrate moiety for toxic activity was indicated by inactivation of toxic compounds after periodate oxidation. The toxin caused lesions on a number of other monocots and dicots and proved to be non-host specific.  相似文献   
110.
Histone lysine methylation and demethylation pathways in cancer   总被引:2,自引:0,他引:2  
The genetic changes leading to the development of human cancer are accompanied by alterations in the structure and modification status of chromatin, which represent powerful regulatory mechanisms for gene expression and genome stability. These epigenetic alterations have sparked interest into deciphering the regulatory pathways and function of post-translational modifications of histones during the initiation and progression of cancer. In this review we describe and summarize the current knowledge of several histone lysine methyltransferase and demethylase pathways relevant to cancer. Mechanistic insight into histone modifications will pave the way for the development and therapeutic application of "epidrugs" in cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号