首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   16篇
  国内免费   1篇
  393篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   9篇
  2018年   10篇
  2017年   6篇
  2016年   11篇
  2015年   16篇
  2014年   13篇
  2013年   30篇
  2012年   24篇
  2011年   32篇
  2010年   21篇
  2009年   25篇
  2008年   29篇
  2007年   28篇
  2006年   20篇
  2005年   14篇
  2004年   19篇
  2003年   14篇
  2002年   14篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1977年   2篇
  1976年   3篇
排序方式: 共有393条查询结果,搜索用时 10 毫秒
301.
302.
Imprinting evolution and human health   总被引:1,自引:0,他引:1  
Genomic imprinting results in parent-of-origin-dependent, monoallelic expression of genes. The functional haploid state of these genes has far-reaching consequences. Not only has imprinting been implicated in accelerating mammalian speciation, there is growing evidence that it is also involved in the pathogenesis of several human conditions, particularly cancer and neurological disorders. Epigenetic regulatory mechanisms govern the parental allele-specific silencing of imprinted genes, and many theories have attempted to explain the driving force for the evolution of this unique form of gene control. This review discusses the evolution of imprinting in Therian mammals, and the importance of imprinted genes in human health and disease.  相似文献   
303.
A series of N-aryl pyridinone inhibitors of p38 mitogen activated protein (MAP) kinase were designed and prepared based on the screening hit SC-25028 (1) and structural comparisons to VX-745 (5). The focus of the investigation targeted the dependence of potency and metabolic stability on the benzyloxy connectivity, the role of the C-6 position and the substitution pattern on the N-phenyl ring. Further optimization produced the highly selective and potent pyridinones 2 and 3. These inhibitors exhibited activity in both acute and chronic models of inflammation.  相似文献   
304.
T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.  相似文献   
305.
Abstract

Human telomerase referred as ‘terminal transferase’ is a nucleoprotein enzyme which inhibits the disintegration of telomere length and act as a drug target for the anticancer therapy. The tandem repeating structure of telomere sequence forms the guanine-rich quadruplex structures that stabilize stacked tetrads. In our present work, we have investigated the interaction of quercetin with DNA tetrads using DFT. Geometrical analysis revealed that the influence of quercetin drug induces the structural changes into the DNA tetrads. Among DNA tetrads, the quercetin stacked with GCGC tetrad has the highest interaction energy of ?88.08?kcal/mol. The binding mode and the structural stability are verified by the absorption spectroscopy method. The longer wavelength was found at 380?nm and it exhibits bathochromic shift. The findings help us to understand the binding nature of quercetin drug with DNA tetrads and it also inhibits the telomerase activity. Further, the quercetin drug interacted with G-quadruplex DNA by using molecular dynamics (MD) simulation studies for 100?ns simulation at different temperatures and different pH levels (T?=?298 K, 320?K and pH = 7.4, 5.4). The structural stability of the quercetin with G-quadruplex structure is confirmed by RMSD. For the acidic condition (pH = 5.4), the binding affinity is higher toward G-quadruplex DNA, this result resembles that the quercetin drug is well interacted with G-quadruplex DNA at acidic condition (pH = 7.4) than the neutral condition. The obtained results show that quercetin drug stabilizes the G-quadruplex DNA, which regulates telomerase enzyme and it potentially acts as a novel anti-cancer agent.

Communicated by Ramaswamy H. Sarma  相似文献   
306.
It is of interest to document the molecular docking analysis of phytocompounds from Andrographis paniculata binding with protein NOTCH1 in the Notch-signaling pathway in the context of cancer. Hence, we document the binding features of neoandrographolide, 14-deoxyandrographolide, androgapholide and andrograpanin with proteins in the notch-signaling pathway for further consideration.  相似文献   
307.
Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis.  相似文献   
308.
Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis.  相似文献   
309.
The popularity of Protein G for the purification of antibodies has given rise to an entire industry that supplies scientists with research grade immunoreagents; however, many times the supplied product is contaminated with antigens bound to the antibody's complementarity-determining regions (CDRs). These "hitchhikers" are a category of host cell proteins that are elusive to detect due to their interaction with the antibody in the final product and yet their impact on an experiment or an entire field of study can be far reaching. In an earlier work, the role of hitchhikers on a human anti-histone antibody destined for clinical usage was explored and a stringent purification scheme developed. Here we use a murine monoclonal, which reflects the type of commercial antibody usually purchased for research. We evaluate three purification schemes: a traditional approach using a one-step, low pH elution buffer (pH 2.5); a gentler approach using a pH gradient elution scheme (pH 7 down to pH 2.5); and finally, a more stringent purification patterned on our earlier published method that uses a quaternary amine guard column and a high salt wash during antibody immobilization on the Protein G. We stress that the stringent purification incorporates the pH gradient scheme and is gentler than the low-pH approach. The resulting product from all three purifications is directly compared for binding potency, histone content (using an ELISA based assay) and residual DNA (using quantitative PCR). The results demonstrate that the first two methods are inadequate for hitchhiker removal. The traditional one-step, low pH approach produces a single elution peak containing histone contaminated antibody with picogram quantities of residual DNA, however, the trailing end of the same peak is loaded with antibody complexed to nanogram amounts of DNA, in some cases, over 100 ng. The pH gradient approach provided antibodies accompanied by only picograms of residual DNA and, on average, 1 out of every 10-20 CDRs occupied by a histone antigen. The more stringent approach, using the salt wash prior to elution with the pH gradient, has an average of 1 out of every 75 CDRs contaminated with a histone while the majority of the residual DNA is captured by the quaternary amine column placed in front of the Protein G. The consequences of these contaminants is illustrated by showing how they manifest themselves in unusual antibody potency values ranging from 558% for antibody bound to histone hitchhikers down to 15% for antibody contaminated with DNA hitchhikers. Those samples purified by the recommended stringent approach show potency values between 90 and 101%. Most importantly, we repeatedly demonstrate in a simulated chromatin immunoprecipitation (ChIP) assay the ability to precipitate clean plasmid DNA with histone contaminated antibody that had been purified using the traditional one-step, low pH elution approach. Expectedly, those antibodies stringently purified and showing 100% binding potency were unable to precipitate DNA in the absence of histone hitchhikers.  相似文献   
310.
TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy)-3-methoxybenzyl(2-aminoethyl)carbamate) which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号