首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4857篇
  免费   370篇
  国内免费   3篇
  5230篇
  2022年   44篇
  2021年   71篇
  2020年   54篇
  2019年   65篇
  2018年   100篇
  2017年   83篇
  2016年   85篇
  2015年   135篇
  2014年   201篇
  2013年   291篇
  2012年   292篇
  2011年   342篇
  2010年   211篇
  2009年   167篇
  2008年   204篇
  2007年   236篇
  2006年   221篇
  2005年   168篇
  2004年   166篇
  2003年   149篇
  2002年   123篇
  2001年   128篇
  2000年   136篇
  1999年   108篇
  1998年   52篇
  1997年   45篇
  1996年   47篇
  1995年   41篇
  1994年   36篇
  1993年   34篇
  1992年   77篇
  1991年   100篇
  1990年   91篇
  1989年   88篇
  1988年   48篇
  1987年   66篇
  1986年   72篇
  1985年   76篇
  1984年   66篇
  1983年   48篇
  1982年   47篇
  1981年   34篇
  1980年   27篇
  1979年   35篇
  1978年   32篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   29篇
  1972年   31篇
排序方式: 共有5230条查询结果,搜索用时 15 毫秒
121.
122.
Ethyl acetate was explored as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel from the crude oils of Jatropha curcas (jatropha), Pongamia pinnata (karanj) and Helianthus annuus (sunflower). The optimum reaction conditions for interesterification of the oils with ethyl acetate were 10% of Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, ethyl acetate to oil molar ratio of 11:1 and the reaction period of 12h at 50 degrees C. The maximum yield of ethyl esters was 91.3%, 90% and 92.7% with crude jatropha, karanj and sunflower oils, respectively under the above optimum conditions. Reusability of the lipase over repeated cycles in interesterification and ethanolysis was also investigated under standard reaction conditions. The relative activity of lipase could be well maintained over twelve repeated cycles with ethyl acetate while it reached to zero by 6th cycle when ethanol was used as an acyl acceptor.  相似文献   
123.
We developed a PCR-based high-throughput genome-walking protocol. The novelty of this protocol is in the random introduction of unique walker primer binding sites into different regions of the genome efficiently by taking advantage of the rolling circle mode of DNA synthesis by Phi29 DNA polymerase after annealing the partially degenerate primers to the denatured genomic DNA. The inherent strand-displacement activity of the Phi29 DNA polymerase displaces the 5′ ends of downstream strands and DNA synthesis continues, resulting in a large number of overlapping fragments that cover the whole genome with the unique walker adapter attached to the 5′ end of all the genomic DNA fragments. The directional genome walking can be performed using a locus-specific primer and the walker primer and Phi29 DNA polymerase-amplified genomic DNA fragments as template. The locus-specific primer will determine the position and direction of the genome walk. Two rounds of successive PCR amplifications by locus-specific and walker primers and their corresponding nested primers effectively amplify the flanking DNA fragments. The desired PCR fragment can be either cloned or sequenced directly using another nested, locus-specific primer. We successfully used this protocol to isolate and sequence 5′ flanking regions/promoters of selected plant genes.  相似文献   
124.
Abstract: Schwann cell cultures were established from adult human sural nerve biopsies. 2'3'-Cyclic nucleotide 3'-phosphohydrolase (CNPase) activity was estimated in the homogenates of those cells by a sensitive isotope assay using [3H]2',3'-cyclic AMP as substrate. A high level of CNPase activity was observed in cultured Schwann cells, whereas cultured human muscle and skin fibroblasts contained negligible levels of CNPase activity. CNPase of human Schwann cells followed typical enzyme-substrate kinetics, with an apparent K m of 1.6 m M for 2',3'-cyclic AMP, and the enzyme was stimulated by detergents such as Triton X-100 and deoxycholate. It was inhibited by p -chloromercuricbenzoate and 2'-AMP. These properties are typical of CNPase isolated from adult brain and spinal cord. CNPase can serve as a new biochemical marker of normal cultured human Schwann cells and can be useful in analyzing the properties of cultured Schwann cells from patients with dysschwannian neuropathies.  相似文献   
125.
A series of hydroxycoumarin derivatives has been synthesized and evaluated against human pancreatic PANC-1 cancer cells under nutrient-deprived conditions. Several compounds exhibited 100% preferential cytotoxicity at low micromolar concentrations under nutrition starvation, and showed no cytotoxicity under nutrient-rich conditions. In this study, a novel geranylgeranylated ether coumarin derivative 9 was found to exhibit the highest cytotoxic activity of 6.25 μM within 24h. The preferential anti-tumor activity exhibited by compound 9 against PANC-1 under low oxygen and nutrient environment illustrates its great potential as a promising lead structure for the development of novel agents to combat pancreatic cancer.  相似文献   
126.
127.
In this study filarial recombinant protein or DNA vaccine constructs encoding BmALT-2 and BmVAH as single or as cocktail antigens were evaluated. Male jirds were immunized intramuscularly with DNA vaccine constructs or were immunized intraperitoneally with protein vaccine. The single and bicistronic DNA constructs induced substantial interferon-γ responses in spleen cells; antigen-specific responses were higher following immunization with the bicistronic cocktail construct and evoked a significant protective response of 57% in jirds challenged with Brugia malayi that was similar in the antibody-dependent cellular cytotoxicity (ADCC) assay and micropore chamber experiment. The cocktail protein vaccines induced a mixture of IgG2a (Th1) and IgG1 (Th2) responses with 80% protective response when challenged with B. malayi infective larvae. However, the single protein vaccine rALT-2 induced Th2 (IgG1/IgG3) with a 70% protective response and rVAH induced Th1 (IgG2a) with a lower proliferative response with 60% protection following challenge with B. malayi infective larvae. These results suggest that filarial cocktail protein vaccines are able to elicit substantial immune and protective responses when compared with single antigen vaccination in suitably vaccinated jirds.  相似文献   
128.
129.
A simple and rapid procedure for purifying large quantities of bacteriophage lambda particles and DNA is described. The procedure involves DEAE-cellulose column chromatography of the phage particles and elution of the phage particles from the column with a low-ionic-strength buffer. The resulting phage were well separated from RNA, DNA, and proteins derived from Escherichia coli host cells. The lambda DNA was prepared from the purified phage particles by the conventional method of phenol extraction and ethanol precipitation. This procedure did not use nucleases, proteases, detergents, or CsCl density gradient centrifugation. The lambda DNA obtained by this method was equivalent in purity to the material prepared by CsCl density gradient centrifugation and amenable to restriction enzyme digestion, ligation, radiolabeling, and double-stranded DNA sequencing. A detailed protocol is described for obtaining 0.5 to 1.0 mg DNA from a 1-liter liquid lysate in less than 5 h. This procedure is simple, inexpensive, and timesaving, and is particularly suitable for large-scale isolation of lambda DNA.  相似文献   
130.
Human uridine 5′-monophosphate synthase (HsUMPS) is a bifunctional enzyme that catalyzes the final two steps in de novo pyrimidine biosynthesis. The individual orotate phosphoribosyl transferase and orotidine monophosphate domains have been well characterized, but little is known about the overall structure of the protein and how the organization of domains impacts function. Using a combination of chromatography, electron microscopy, and complementary biophysical methods, we report herein that HsUMPS can be observed in two structurally distinct states, an enzymatically active dimeric form and a nonactive multimeric form. These two states readily interconvert to reach an equilibrium that is sensitive to perturbations of the active site and the presence of substrate. We determined that the smaller molecular weight form of HsUMPS is an S-shaped dimer that can self-assemble into relatively well-ordered globular condensates. Our analysis suggests that the transition between dimer and multimer is driven primarily by oligomerization of the orotate phosphoribosyl transferase domain. While the cellular distribution of HsUMPS is unaffected, quantification by mass spectrometry revealed that de novo pyrimidine biosynthesis is dysregulated when this protein is unable to assemble into inactive condensates. Taken together, our data suggest that HsUMPS self-assembles into biomolecular condensates as a means to store metabolic potential for the regulation of metabolic rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号