首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   103篇
  974篇
  2022年   12篇
  2021年   27篇
  2020年   8篇
  2019年   14篇
  2018年   17篇
  2017年   15篇
  2016年   14篇
  2015年   32篇
  2014年   43篇
  2013年   58篇
  2012年   58篇
  2011年   55篇
  2010年   33篇
  2009年   39篇
  2008年   52篇
  2007年   41篇
  2006年   37篇
  2005年   22篇
  2004年   29篇
  2003年   27篇
  2002年   19篇
  2001年   13篇
  2000年   10篇
  1999年   13篇
  1998年   7篇
  1997年   8篇
  1994年   7篇
  1992年   11篇
  1991年   17篇
  1990年   8篇
  1989年   7篇
  1988年   14篇
  1987年   12篇
  1986年   7篇
  1984年   10篇
  1983年   10篇
  1980年   7篇
  1979年   8篇
  1976年   6篇
  1975年   13篇
  1974年   9篇
  1973年   11篇
  1972年   8篇
  1970年   18篇
  1969年   12篇
  1968年   9篇
  1967年   6篇
  1966年   8篇
  1965年   10篇
  1961年   5篇
排序方式: 共有974条查询结果,搜索用时 15 毫秒
131.
132.
Cellular and organellar membranes are dynamic materials that underlie many aspects of cell biology. Biological membranes have long been thought of as elastic materials with respect to bending deformations. A wealth of theory and experimentation on pure phospholipid membranes provides abundant support for this idea. However, biological membranes are not composed solely of phospholipids—they also incorporate a variety of amphiphilic molecules that undergo rapid transbilayer flip-flop. Here we describe several experimental systems that demonstrate deformation-induced molecular flip-flop. First we use a fluorescence assay to track osmotically controlled membrane deformation in single component fatty acid vesicles, and show that the relaxation of the induced bending stress is mediated by fatty acid flip-flop. We then look at two-component phospholipid/cholesterol composite vesicles. We use NMR to show that the steady-state rate of interleaflet diffusion of cholesterol is fast relative to biological membrane remodeling. We then use a Förster resonance energy transfer assay to detect the transbilayer movement of cholesterol upon deformation. We suggest that our results can be interpreted by modifying the area difference elasticity model to account for the time-dependent relaxation of bending energy. Our findings suggest that rapid interleaflet diffusion of cholesterol may play a role in membrane remodeling in vivo. We suggest that the molecular characteristics of sterols make them evolutionarily preferred mediators of stress relaxation, and that the universal presence of sterols in the membranes of eukaryotes, even at low concentrations, reflects the importance of membrane remodeling in eukaryotic cells.  相似文献   
133.
134.
135.
Translating the timing of brain developmental events across mammalian species using suitable models has provided unprecedented insights into neural development and evolution. More importantly, these models can prove to be useful abstractions and predict unknown events across species from known empirical event timing data retrieved from published literature. Such predictions can be especially useful since the distribution of the event timing data is skewed with a majority of events documented only across a few selected species. The present study investigates the choice of single hidden layer feed-forward neural networks (FFNN) for predicting the unknown events from the empirical data. A leave-one-out cross-validation approach is used to determine the optimal number of units in the hidden layer and the decay parameter for the FFNN. It is shown that unlike the present Finlay-Darlington (FD) model, FFNN does not impose any constraints on the functional form of the model and falls under the class of semiparametric regression models that can approximate any continuous function. The results from FFNN as well as FD model also indicate that a majority of events with large absolute prediction errors correspond to those of primates and late events comprising the tail of event timing data distribution with minimal representation in the empirical data. These results also indicate that accurate prediction of primate events may be challenging.  相似文献   
136.
The increase in crop productivity is an urgent need of the time to reduce scarcity of food in underdeveloped countries. Several biological, chemical and physical methods have been applied to promote crop yield. Application of magnetic field (MF) is an emerging physical method used to increase plant growth and yield. The reports on MF pretreatment-induced nutritional changes in harvested seeds are scarce. We previously identified the optimal frequency of MF to improve plant growth and yield as 1500 nT at 10.0 Hz. This study was aimed to investigate the effect of MF treatment on storage proteins and fatty acids in harvested soybean seeds. The results showed that MF triggered globulin production and suppressed prolamin production. However, lipid content in seeds increased, because MF exposure caused an elevation of several fatty acids including caprylic acid, palmitic acid, heptadecanoic acid, linoleic acid, lignoceric acid and eicosapentaenoic acid. This is the first report to reveal the seed pretreated MF on nutritional values of harvested seeds. This study suggests that MF treatment improves seed quality by regulating the metabolism of storage proteins and fatty acids.  相似文献   
137.
ABSTRACT

Conservation biological control is an approach to enhance the efficacy of natural enemies by ensuring their availability in an agro-ecosystem on a long temporal scale. An increased survival often leads to better fecundity and improved behaviour of the natural enemies, which in turn ensures sustainable pest management. This paper, apart from being a concise review of conservation biological control, deals with selected India-specific case studies and field experiences on habitat manipulation and refugia. Results from a Bengaluru-based study during 2012–2015 on conservation biological control in an organic mango ecosystem are also presented. It also dwells briefly on conservation of insectivorous birds and touches upon conservation biocontrol with respect to entomopathogenic microorganisms and plant disease antagonists.  相似文献   
138.
A new series of 1,4-dihydropyridine derivatives (2a–h, 3a–e, and 4a–e) were systematically designed and synthesized via ultrasound irradiation methods with easy work-up and good yields. Compounds structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectra. The synthesized compounds were screened for both antimicrobial and anticoagulant activities. Compound 2e (MIC: 0.25?μg/mL) was highly active against Escherichia coli and compound 2c (MIC: 0.5?μg/mL) was also highly active against Pseudomonas aeruginosa compared with ciprofloxacin. (MIC: 1?μg/mL) The antifungal activity of 2c (MIC: 0.5?μg/mL) against Candida albicans was high relative to that of clotrimazole (MIC: 1?μg/mL). Anticoagulant activity was determined by activated partial thromboplastin time (APTT) and prothrombin time (PT) coagulation assays. Compound 4-(4-hydroxyphenyl)-2,6-dimethyl-N3,N5-bis(5-phenyl-1,3,4-thiadiazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxamide 3d (>1000?s in APTT assays) was highly active in anticoagulant screening compared with the reference of heparin.Cytotoxicity was evaluated using HepG2 (liver), HeLa (cervical), and MCF-7 (breast) cancer cell lines, with high toxicities observed for 2c (GI50?=?0.02?μm) against HeLa cell line and 2e (GI50?=?0.03?μm) equipotant against MCF-7 cell line. Therefore, the compounds 2e, 2c and 3d can serve as lead molecules for the development of new classes of antimicrobial and anticoagulant agent.  相似文献   
139.
140.
Of the different hormones tested, cytokinins stimulated nitrate-induced nitrate reductase (NR) activity in the dark. The optimal stimulation was obtained at 16 hr and this was sensitive to tungstate, 6-methylpurine and cycloheximide. The cytokinin stimulation of NR activity was further enhanced by brief irradiation with red light, but this effect was not noticed when leaves were exposed to far-red light. Both kinetin and red light, when given together, or given with a darkness interruption, stimulated the NR activity more than with either of them alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号