首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   141篇
  2023年   7篇
  2022年   10篇
  2021年   32篇
  2020年   8篇
  2019年   24篇
  2018年   23篇
  2017年   30篇
  2016年   26篇
  2015年   54篇
  2014年   55篇
  2013年   68篇
  2012年   78篇
  2011年   66篇
  2010年   73篇
  2009年   34篇
  2008年   68篇
  2007年   55篇
  2006年   59篇
  2005年   51篇
  2004年   50篇
  2003年   43篇
  2002年   39篇
  2001年   21篇
  2000年   21篇
  1999年   28篇
  1998年   7篇
  1997年   11篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1992年   12篇
  1991年   11篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   12篇
  1982年   9篇
  1981年   6篇
  1980年   7篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   8篇
  1974年   9篇
  1972年   8篇
  1971年   8篇
排序方式: 共有1284条查询结果,搜索用时 15 毫秒
111.
112.
The P23H mutation in the rhodopsin gene causes rhodopsin misfolding, altered trafficking and formation of insoluble aggregates leading to photoreceptor degeneration and autosomal dominant retinitis pigmentosa (RP). There are no effective therapies to treat this condition. Compounds that enhance dissociation of protein aggregates may be of value in developing new treatments for such diseases. Anti-protein aggregating activity of curcumin has been reported earlier. In this study we present that treatment of COS-7 cells expressing mutant rhodopsin with curcumin results in dissociation of mutant protein aggregates and decreases endoplasmic reticulum stress. Furthermore we demonstrate that administration of curcumin to P23H-rhodopsin transgenic rats improves retinal morphology, physiology, gene expression and localization of rhodopsin. Our findings indicate that supplementation of curcumin improves retinal structure and function in P23H-rhodopsin transgenic rats. This data also suggest that curcumin may serve as a potential therapeutic agent in treating RP due to the P23H rhodopsin mutation and perhaps other degenerative diseases caused by protein trafficking defects.  相似文献   
113.
The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellular T-cell protein tyrosine phosphatase TC-PTP (PTPN2) using the human neuroblastoma cell line, IMR-32. In vivo and in vitro binding assays demonstrated interaction between C3G and TC-PTP. Interaction is mediated through the Crk-binding region of C3G and C-terminal noncatalytic residues of TC-PTP. C3G interacted better with a substrate trap mutant of TC48 and this complex formation was inhibited by vanadate. Endogenous pC3G colocalized with catalytically inactive mutant TC48 in the Golgi. Expression of TC48 abrogated pervanadate and c-Src induced phosphorylation of C3G without affecting total cellular phospho-tyrosine. Insulin-like growth factor treatment of c-Src expressing cells resulted in dephosphorylation of C3G dependent on the activity of endogenous TC48. TC48 expression inhibited forskolin induced tyrosine phosphorylation of C3G and neurite outgrowth in IMR-32 cells. Our results identify a novel Golgi localized substrate of TC48 and delineate a role for TC48 in dephosphorylation of substrates required during differentiation of human neuroblastoma cells.  相似文献   
114.
Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3' single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3' telomere DNA, can regulate both ALT and TRD.  相似文献   
115.
Akt signaling pathway in pacing-induced heart failure   总被引:2,自引:0,他引:2  
Marked changes in energy substrate utilization occur during the progression of congestive heart failure (CHF) where fatty acid utilization, as the primary source of cardiac energy, is severely diminished, oxidative phosphorylation is down-regulated, and glucose uptake and utilization increase. Neither the signaling events or the molecular basis for the shift in substrate utilization have yet been elucidated. This study was designed to examine in the canine model of paced-induced CHF, the potential role of the Akt pathway in signaling the metabolic transitions central to progression to heart failure. Myocardial Akt levels were elevated in early heart failure (after 1–2 weeks of pacing) accompanied by increased levels of oxidative stress, cytokine tumor necrosis factor- (TNF-) and free fatty acid accumulation, reduced activity levels of mitochondrial respiratory complexes III and V and apoptosis initiation. At severe heart failure (3–4 weeks of pacing), there was significant further increase in myocardial apoptosis, with pronounced decline in myocardial Akt kinase activity. At this later stage, there were no further changes in free fatty acid accumulation, complex V activity or in oxidative stress levels indicating that these changes primarily occurred in the earlier stage of evolving heart failure. In contrast, during severe heart failure, both the reduction in complex III activity and increase in TNF- level became more pronounced. Our data provide critical support for the hypothesis that the Akt signaling pathway is a contributory element in the early signaling events leading to the progression of pacing-induced heart failure, accompanying the shift in substrate utilization. (Mol Cell Biochem 268: 103–110, 2005)  相似文献   
116.
117.
We report an in-depth computational study of the protein sequences and structures of the superfamily of archaeo-eukaryotic primases (AEPs). This analysis greatly expands the range of diversity of the AEPs and reveals the unique active site shared by all members of this superfamily. In particular, it is shown that eukaryotic nucleo-cytoplasmic large DNA viruses, including poxviruses, asfarviruses, iridoviruses, phycodnaviruses and the mimivirus, encode AEPs of a distinct family, which also includes the herpesvirus primases whose relationship to AEPs has not been recognized previously. Many eukaryotic genomes, including chordates and plants, encode previously uncharacterized homologs of these predicted viral primases, which might be involved in novel DNA repair pathways. At a deeper level of evolutionary connections, structural comparisons indicate that AEPs, the nucleases involved in the initiation of rolling circle replication in plasmids and viruses, and origin-binding domains of papilloma and polyoma viruses evolved from a common ancestral protein that might have been involved in a protein-priming mechanism of initiation of DNA replication. Contextual analysis of multidomain protein architectures and gene neighborhoods in prokaryotes and viruses reveals remarkable parallels between AEPs and the unrelated DnaG-type primases, in particular, tight associations with the same repertoire of helicases. These observations point to a functional equivalence of the two classes of primases, which seem to have repeatedly displaced each other in various extrachromosomal replicons.  相似文献   
118.
119.
Placental ribonuclease inhibitor (RI) binds diverse mammalian RNases with dissociation constants that are in the femtomolar range. Previous studies on the complexes of RI with RNase A and angiogenin revealed that RI utilises largely distinctive interactions to achieve high affinity for these two ligands. Here we report a 2.0 angstroms resolution crystal structure of RI in complex with a third ligand, eosinophil-derived neurotoxin (EDN), and a mutational analysis based on this structure. The RI-EDN interface is more extensive than those of the other two complexes and contains a considerably larger set of interactions. Few of the contacts present in the RI-angiogenin complex are replicated; the correspondence to the RI-RNase A complex is somewhat greater, but still modest. The energetic contributions of various interface regions differ strikingly from those in the earlier complexes. These findings provide insight into the structural basis for the unusual combination of high avidity and relaxed stringency that RI displays.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号