首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   22篇
  315篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   11篇
  2012年   16篇
  2011年   16篇
  2010年   13篇
  2009年   14篇
  2008年   12篇
  2007年   13篇
  2006年   17篇
  2005年   20篇
  2004年   19篇
  2003年   11篇
  2002年   8篇
  2001年   6篇
  2000年   16篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1970年   3篇
  1968年   1篇
  1950年   1篇
  1936年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
51.
Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC)-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.  相似文献   
52.
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.  相似文献   
53.
54.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
55.
The results described in the accompanying article support the model in which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the cytoplasmic face of the ER, and functions as a glucosyl donor for three Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the lumenal compartment. In this study, the enzymatic synthesis and structural characterization by NMR and electrospray-ionization tandem mass spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing 2-4 isoprene units with either the cis - or trans - stereoconfiguration in the beta-position are described. The water- soluble analogs were (1) used to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) and (2) tested as potential substrates for a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10, Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c )Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product labeled in vitro. A preference was exhibited for C15-20 substrates containing an internal cis -isoprene unit in the beta-position. In addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the lumenal compartment of sealed microsomal vesicles from rat liver and pig brain via a protein-mediated transport system enriched in the ER. The properties of the ER transport system have been characterized. Glc- P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or bovine erythrocytes. The results of these studies indicate that (1) the internal cis -isoprene units are important for the utilization of Glc-P-Dol as a glucosyl donor and (2) the transport of the water- soluble analog may provide an experimental approach to assay the hypothetical "flippase" proposed to mediate the transbilayer movement of Glc-P-Dol from the cytoplasmic face of the ER to the lumenal monolayer.   相似文献   
56.
Snell dwarf mice (Pit1dw/dw) exhibit deficiencies in growth hormone, prolactin, and thyroid stimulating hormone. Besides being an experimental model of hypopituitarism, these mice are long‐lived (>40% lifespan extension) and utilized as a model of slowed/delayed aging. Whether this longevity is accompanied by a compromised quality of life in terms of muscular performance has not yet been characterized. In this study, we investigated nontrained and trained muscles 1 month following a general validated resistance‐type exercise protocol in 3‐month‐old Snell dwarf mice and control littermates. Nontrained Snell dwarf gastrocnemius muscles exhibited a 1.3‐fold greater muscle mass to body weight ratio than control values although muscle quality, maximum isometric torque normalized to muscle mass, and fatigue recovery were compromised. For control mice, training increased isometric torque (17%) without altering muscle mass. For Snell dwarf mice, isometric torque was unaltered by training despite decreased muscle mass that rendered muscle mass to body weight ratio comparable to control values. Muscle quality and fatigue recovery improved twofold and threefold, respectively, for Snell dwarf mice. This accompanied a fourfold increase in levels of vascular cell adhesion molecule‐1 (VCAM‐1), a mediator of progenitor cell recruitment, and muscle remodeling in the form of increased number of central nuclei, additional muscle fibers per unit area, and altered fiber type distribution. These results reveal a trade‐off between muscle quality and longevity in the context of anterior pituitary hormone deficiency and that resistance‐type training can diminish this trade‐off by improving muscle quality concomitant with VCAM‐1 upregulation and muscle remodeling.  相似文献   
57.
58.
Patch structure in sandy, compared to rocky streams, is characterized by isolated snags that can only be colonized by drifting. By measuring drift from patches (snags) of various quality we determined the factors that influence habitat selection and drift of the predaceous stoneflies Acroneuria abnormis and Paragnetina fumosa. The presence of refugia (loose bark and leaf packs) was more important than hunger level and modified the effects of increased predator densities and aggressive interactions. Stoneflies concentrated to 8x natural densities with access to refugia remained longer on snags than a single stonefly without access to refugia. During periods of activity, refugia were defended with larger stoneflies always displacing smaller nymphs. During long periods of inactivity, two and sometimes three nymphs would rest side-by-side sharing the same refuge. Hunger level (starved versus satiated stoneflies), an indirect measure of a predator's response to prey availability, had no significant effect on drift or habitat selection regardless of the presence of refugia. Stonefly predators had a uniform distribution while their prey were clumped. Drift was deliberate and almost always delayed until night, usually at dusk or dawn. An examination of previous research plus the results of this study suggest that non-predatory intra- and interspecific interactions can be an important mechanism causing drift in streams.  相似文献   
59.
60.
INTRODUCTION: Aseptic loosening is considered to be the main problem of modern endoprothesis. Tumor necrosis factor alpha (TNFalpha) seems to be the initiator protein of particle disease. The aim of our study was to investigate the TNFalpha response of macrophage like cells (MLC) after stimulation with periprosthetic particles, typically found during revision surgery. For this purpose alumina ceramic (Al2O3), zirconia ceramic (ZrO2) and titanium (Ti) particles of different sizes and concentrations were used. Important was to study the effects of different sizes due to TNFalpha secretion and the comparison of the biological effects of alumina ceramic and titanium. METHOD: To obtain an TNFalpha profile we used an established macrophage model (Rader et al.) with THP-1 cells (human monocytic cell line). Therefore 106 MLC were incubated with different particle concentrations and sizes for 6 h. The supernatant was then investigated for TNF using ELISA assay. RESULTS: Ti-particles provoked in both sizes (0.2 microm and 2.5 microm) the greatest TNFalpha response, 8 times and 17 times as high in comparison with control. But substantially more 0.2 microm sized Ti-particles were necessary to get the above mentioned results. Al2O3-particles were not as effective as Ti, but they released fourfold more TNFalpha compared to control. There was no difference in TNFalpha-secretion comparing Al2O3-particles of different sizes (0.6 microm and 2 microm), but a 1000 times greater concentration of the 0.6 microm sized particles were needed. Using Al2O3- and Ti-particles of the same size and concentration, Ti provoked a significant higher TNFalpha response. ZrO2 showed no effects on TNFalpha release. CONCLUSION: Because of our results we recommend ceramic articulating surfaces, which are superior to metal on metal matings ion term of biological reactions. Additionally bigger wear particles should be avoided. Revisionoperation should be done early to avoid huge amount of wear particles and to minimize local osteolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号