首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  29篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 12 毫秒
11.
The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis.In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.The two defining characteristics of human embryonic stem cells (hESCs),1 self-renewal and pluripotency, are maintained by a delicate balance of intracellular and extracellular signaling processes. Extracellular regulation is primarily the result of changes in the microenvironment surrounding the cells during growth in vitro or in vivo. HESCs interact with this “niche ” through support cells, extracellular matrix (ECM) components, and autocrine/paracrine signaling (reviewed in Refs. 13). Modulation of any of these supportive elements individually or in combination has been used extensively to alter hESC behavior (13).The culture of hESCs, as well as that of human induced pluripotent stem cells (hiPSCs), is conventionally performed on a layer of irradiated mouse embryonic fibroblast cells (MEFs). These MEFs are believed to promote the maintenance of hESCs and hiPSCs through the secretion of beneficial support proteins and cytokines into the soluble microenvironment. A number of proteomic studies have been conducted that examine the secretome of feeder-cell layers in an attempt to elucidate proteins and pathways essential for hESC and hiPSC survival (47). Alternatively, hESCs and hiPSCs can be cultured in feeder-free conditions in the absence of support cells. In feeder-free conditions, hESCs and hiPSCs are most often grown on the basement membrane matrix Matrigel™ in medium that has been previously conditioned by MEFs (MEF-CM). Matrigel™ is a gelatinous mixture that is secreted by Engelbreth-Holm-Swarm mouse sarcoma cells (8). Although recent studies have proposed that a variety of defined matrices can support the growth of hESCs and hiPSCs, few of these can maintain a wide range of stem cell lines and therefore are typically not used in place of Matrigel™. The properties of Matrigel™ that make it such an effective matrix for hESC and hiPSC culture remain poorly understood. Because of the complexity of matrices like Matrigel™, the majority of proteomic studies that examine the hESC and hiPSC microenvironment have focused on contributions from support cells and soluble extracellular factors.The ECM is typically a complex network of structural proteins and glycosaminoglycans that function to support cells through the regulation of processes such as adhesion and growth factor signaling (9). Thus, it is not surprising that the generation of a well-defined matrix capable of facilitating hESC and hiPSC self-renewal has remained difficult (10). Previous proteomic investigations of Matrigel™ and other matrices supportive of hESC maintenance in vitro have revealed the presence of numerous growth, binding, and signaling proteins (11, 12). Further examination of how hESCs and hiPSCs interact with these complex matrices would provide critical information about what role the ECM plays in the organization of processes involved in the regulation of self-renewal and pluripotency.A recent study has established the ability of hESC-derived matrix microenvironments to alter tumorigenic properties through the reprogramming of metastatic melanoma cells (13). Importantly, this effect was found to be dependent on the exposure of metastatic cells to hESC-derived conditioned Matrigel™. Culture of metastatic melanoma cells in hESC-conditioned medium did not promote the reprogramming effect. These data suggest that the proteins responsible for this effect were integrated in the matrix. With the use of immunochemical techniques, it was later found that the left-right determination (Lefty) proteins A and B that were deposited in the matrix by hESCs during conditioning were at least in part responsible for the cellular change observed in metastatic cells (14). The Lefty A and B proteins are antagonists of transforming growth factor (TGF)-β signaling that act directly on Nodal protein, a critical regulator of the stem cell phenotype (15, 16). Subsequent studies of conditioned matrix utilizing mESCs implicated the bone morphogenic protein (BMP) 4 antagonist Gremlin as a primary regulator of the observed changes in metastatic cells (17). Collectively, these studies were all biased by a targeted analysis of potential effectors of metastatic cells. A comprehensive proteomic analysis of conditioned matrix could potentially reveal other factors involved in metastatic cell reprogramming. Furthermore, proteomic examination of hESC and hiPSC conditioned matrix could expose factors important in the regulation of self-renewal and pluripotency by the microenvironment in vitro.To this end, we have analyzed both types of human pluripotent stem cells, hESCs and hiPSCs, via a mass spectrometry (MS)-based proteomics approach to identify proteins deposited during growth in feeder-free conditions in vitro on Matrigel™. To investigate the hESC- and hiPSC-derived matrix, the metabolic labeling technique known as stable isotope labeling with amino acids in cell culture (SILAC) was used (18). SILAC facilitates the identification of hESC- and hiPSC-derived proteins that would otherwise be confounded by the presence of mouse-derived protein background from Matrigel™. From the proteomic analysis of three cells lines, namely, the hESC lines H9 and CA1 and the hiPSC line BJ-1D, we identified a total of 621, 1355, and 1350 total unique proteins, respectively. This work represents the first analysis of a hESC- and hiPSC-derived conditioned matrix and resulted in the identification of at least one novel microenvironmental contributor responsible for the regulation of human pluripotent stem cells.  相似文献   
12.
Centaurea ragusina L., an endemic Croatian plant species, revealed a good cytotoxic activity of aqueous extracts (AE) on human bladder (T24) and human glioblastoma (A1235) cancer cell lines. The chemical constituents were tentatively identified using high performance liquid chromatography HPLC‐DAD/ESI‐TOF‐MS in negative ionization mode. The main compounds of herba extract were sesquiterpene lactones: solstitialin A 3,13‐diacetate and epoxyrepdiolide; organic acid: quinic acid. The main compounds of flower extract were organic acids: quinic acid, citric acid, and malic acid; sesquiterpene lactone: cynaropicrin; phenolic compounds: chlorogenic acid and phenylpropanoid: syringin. The AE of Cragusina were investigated for correlation of their effects on human bladder (T24) and human glioblastoma (A1235) cancer cell lines using the MTT assay. Although both extracts showed significant dose‐ and time‐dependent cytotoxic activity against both cancer cell lines, the flower extract exhibited slightly higher activity. In order to determine type of cell death induced by treatment, cell lines were exposed subsequently to a treatment with both flower and herba AE. The majority of the cells died by induced apoptosis treatment. Flower AE (26.25%), compared to a leaf AE (22.15%) showed slightly higher percentage of an apoptosis in T24 cells, when compared to a non‐treated cells (0.04%).  相似文献   
13.
The aim of this study is to determine the differences in sexual life of women with cervical cancer after surgery and radiation therapy. A total of 210 patients treated for cervical cancer at the Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Croatia between March 2001 and March 2003 were asked to fill in the questionnaire. Sexual life had worsened in 42.86% of the surgical patients, as had in 25.00% of irradiated patients (p < 0.01). The main reason of sex life impairment was fear of pain (55.55% and 42.86%, respectively (p > 0.05)). More than 80% of patients didn't notice any changes in their partner's behavior. Almost every third woman felt certain change in her "body image", similar in both groups (p > 0.05). Need for consultations regarding sex life after diagnosis were recognized by 71.43% of patients. In conclusion we can say that considerable amount of attention should be given to psychological and sexual aspects of recovery of patients, because those aspects can significantly influence patients rehabilitation and prognosis.  相似文献   
14.
Current models of the vocal folds derive their shape from approximate information rather than from exactly measured data. The objective of this study was to obtain detailed measurements on the geometry of human vocal folds and the glottal channel in phonatory position. A non-destructive casting methodology was developed to capture the vocal fold shape from excised human larynges on both medial and superior surfaces. Two female larynges, each in two different phonatory configurations corresponding to low and high fundamental frequency of the vocal fold vibrations, were measured. A coordinate measuring machine was used to digitize the casts yielding 3D computer models of the vocal fold shape. The coronal sections were located in the models, extracted and fitted by piecewise-defined cubic functions allowing a mathematical expression of the 2D shape of the glottal channel. Left-right differences between the cross-sectional shapes of the vocal folds were found in both the larynges.  相似文献   
15.
Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer’s disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC50 of 0.57?mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14?mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ~99% inhibition at 50?μM.  相似文献   
16.
Jamil  A.  Lajtha  K.  Radan  S.  Ruzsa  G.  Cristofor  S.  Postolache  C. 《Hydrobiologia》1999,392(2):143-158
Specimens of mussels species Anodonta anatina, Unio pictorum, U. tumidus and surfical sediment samples were collected in the summers of 1994 and 1995 from twelve lakes in the Danube Delta, Romania. Whole mussel tissues were analyzed for metals (Ag, As, Cd, Co, Cu, Cr, Ni, Pb, Se and Zn), and sediment samples were subjected to weak acid extraction and to a sequential extraction procedure, and analyzed for Cr, Cu, Ni and Zn. Total mean Cu and Ag concentrations were statistically greater in Unio species than in Anodonta species, but other metal levels did not significantly differ between mussel species. There was a ten fold variation for Cd and Pb and five fold variation for Zn, Ag and Co concentrations in mussels among lakes. Mean concentrations of As, Cu, Se and Zn in mussel tissues varied two fold among lakes. Zn, Co and Cd concentrations in mussels were significantly negatively correlated with distance gradients from the origin of the Delta and with distance from main channels of the Danube. Other metal concentrations in mussels did not correlate with either distance gradient. Trace metal levels in mussel tissues were correlated with those in weak acid and in sequential extractions of sediment. Zn concentrations in the carbonate fraction was the best predictor of Zn concentrations in mussels. Cu and Ni levels in the organic matter and sulfide fraction were the best estimators of Cu and Ni concentrations in mussels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
17.
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH oxidase. Since it acts as a potent inhibitor in studies with neutrophils and macrophages, no inhibitory effect can often be found in non-phagocyte cells. In our experiments, apocynin even stimulated reactive oxygen species (ROS) production by vascular fibroblasts. Even when added to macrophages, apocynin initially caused an increase in ROS production. The inhibition of ROS formation followed, suggesting that in the presence of leukocyte myeloperoxidase and hydrogen peroxide, apocynin is converted to another compound. Apocynin pre-activated with H2O2 and horseradish peroxidase (HRP) inhibited ROS production immediately. In non-phagocytes, apocynin stimulated ROS production and no inhibition was observed even after 60 min. Apocynin treated with H2O2 and HRP, however, decreased ROS production in the same manner as in macrophages. The stimulatory effect on ROS production can be abolished by tiron and superoxide dismutase (SOD), suggesting that superoxide was the produced species. The effect of apocynin was inhibited by diphenylene iodinium (DPI), a non-scavenging NADPH oxidase inhibitor. It can be summarized that apocynin stimulates cell superoxide production. In the presence of peroxidase and hydrogen peroxide, however, it is converted into another compound that acts as an inhibitor of superoxide production. It strongly suggests that under conditions in vivo, apocynin can have opposite effects on phagocytes and non-phagocyte cells. It acts as an inhibitor of phagocyte NADPH oxidase but also as a ROS production stimulator in non-phagocyte cells.  相似文献   
18.
Although recombinant human bone morphogenetic proteins (BMPs) are used locally for treating bone defects in humans, their systemic effect on bone augmentation has not been explored. We have previously demonstrated that demineralized bone (DB) from ovariectomized (OVX) rats cannot induce bone formation when implanted ectopically at the subcutaneous site. Here we showed in vitro that 17beta-estradiol (E2) specifically induced expression of Bmp6 mRNA in MC3T3-E1 preosteoblastic cells and that bone extracts from OVX rats lack BMPs. Next we demonstrated that 125I-BMP-6 administered systemically accumulated in the skeleton and also restored the osteoinductive capacity of ectopically implanted DB from OVX rats. BMP-6 applied systemically to aged OVX rats significantly increased bone volume and mechanical characteristics of both the trabecular and cortical bone, the osteoblast surface, serum osteocalcin and osteoprotegerin levels, and decreased the osteoclast surface, serum C-telopeptide, and interleukin-6. E2 was significantly less effective, and was not synergistic with BMP-6. Animals that discontinued BMP-6 therapy maintained bone mineral density gains for another 12 weeks. BMP-6 increased in vivo the bone expression of Acvr-1, Bmpr1b, Smad5, alkaline phosphatase, and collagen type I and decreased expression of Bmp3 and BMP antagonists, chordin and cerberus. These results show, for the first time, that systemically administered BMP-6 restores the bone inductive capacity, microarchitecture, and quality of the skeleton in osteoporotic rats.  相似文献   
19.
Background and objective

Oxidative stress is a process that occurs through free radicals on the cell membranes which causes damage to the cell and intracellular organelles, especially mitochondria membranes. H2O2 induced oxidative stress in human cells is of interest in toxicological research since oxidative stress plays a main role in the etiology of several pathological conditions. Neutrophil Elastase (Serine proteinase) is involved in the pathology process of emphysema as a respiratory disease through lung inflammation, and destruction of alveolar walls. The present study investigated the direct oxidative stress effects of Elastase in comparison with H2O2 on human lung epithelial cells (A549 cells) concerning the generation of reactive oxygen species (ROS) and modulation of oxidation resistance 1 (OXR1) and its downstream pathway using the well-known antioxidant Ellagic acid as an activator of antioxidant genes.

Materials and methods

The human pulmonary epithelial cells (A549) were divided into the nine groups including Negative control, Positive control (H2O2), Elastase (15, 30, and 60 mU/mL), Ellagic acid (10 μmol/L), and Elastase?+?Ellagic acid. Cytotoxicity, ROS generation, oxidative stress profile, level of reactive metabolites, and gene expression of OXR1 and its downstream genes were measured in all groups.

Results

The obtained data demonstrated that Elastase exposure caused oxidative stress damage in a dose-depended manner which was associated with decreases in antioxidant defense system genes. Conversely, treatment with Ellagic acid as a potent antioxidant showed improved antioxidant enzyme activity and content which was in line with the upregulation of OXR1 signaling pathway genes.

Conclusions

The present findings can highlight the novel mechanism underlying the oxidative stress induced by Neutrophil Elastase through OXR1 and related genes. Moreover, the benefit of Ellagic acid on cytoprotection, resulting from its antioxidant properties was documented.

  相似文献   
20.
We investigated the nutrient uptake capacity of three lakes (Uzlina, Matita and Rosu) within the Danube Delta during high water level in June and low water level in September 1999. Special emphasis was placed on nutrient cycling at the sediment-water interface and on the self-purification capacity of the lakes in the Danube Delta. In order to estimate the nutrient uptake of selected lakes we present in this paper the results of water analyses, benthic flux chamber experiments and deck incubation experiments of 15N-labeled sediment cores at the inflow and the outlet of the lakes. The external input of dissolved inorganic nitrogen and silica into the lakes decreases with increasing distance to the main Danube branches whereas the total dissolved phosphorus input is independent of the hydrological distance to the main branches. The nutrient loading is highest in the inflow channels, and decreases towards the outflow of the lakes. In June, the uptake of NO3 , TDP and Si(OH)4 in the lakes was higher than in September. In contrast, NH4 + uptake was more intense in September, when benthic release was more intense as well. On average, about 76% of the external plus internal nitrogen and phosphorus input into the lakes was taken up by macrophytes and phytoplankton during the growing season, whereas the uptake of external nutrient input amounted to about 43%. The benthic release of ammonia and silica increases from June to September and indicates, that part of the nutrients taken up during the growing season might be released during winter. We estimate the net impact of the Delta on the nutrient reduction of the Danube during the growing season is about 4.3%, assuming 10% of the Danube water is flowing through the Delta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号