首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   16篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  1999年   7篇
  1998年   10篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有145条查询结果,搜索用时 703 毫秒
101.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   
102.
Clarke  JL; Watkins  WM 《Glycobiology》1999,9(2):191-202
Previous investigations on the monkey kidney COS cell line demonstrated the weak expression of fucosylated cell surface antigens and presence of endogenous fucosyltransferase activities in cell extracts. RT-PCR analyses have now revealed expression of five homologs of human fucosyltransferase genes, FUT1, FUT4, FUT5, FUT7, and FUT8, in COS cell mRNA. The enzyme in COS cell extracts acting on unsialylated Type 2 structures is closely similar in its properties to the alpha1,3- fucosyltransferase encoded by human FUT4 gene and does not resemble the product of the FUT5 gene. Although FUT1 is expressed in the COS cell mRNA, it has not been possible to demonstrate alpha1,2- fucosyltransferase activity in cell extracts but the presence of Le(y) and blood-group A antigenic determinants on the cell surface imply the formation of H-precursor structures at some stage. The most strongly expressed fucosyltransferase in the COS cells is the alpha1,6-enzyme transferring fucose to the innermost N -acetylglucosamine unit in N - glycan chains; this enzyme is similar in its properties to the product of the human FUT8 gene. The enzymes resembling the human FUT4 and FUT8 gene products both had pH optima of 7.0 and were resistant to 10 mM NEM. The incorporation of fucose into asialo-fetuin was optimal at 5.5 and was inhibited by 10 mM NEM. This result initially suggested the presence of a third fucosyltransferase expressed in the COS cells but we have now shown that triantennary N- glycans with terminal nonreducing galactose units, similar to those present in asialo-fetuin, are modified by a weak endogenous beta-galactosidase in the COS cell extracts and thereby rendered suitable substrates for the alpha1,6- fucosyltransferase.   相似文献   
103.
104.
105.
106.
Ungulates exhibit diverse mating systems that range from monogamous pair territories to highly polygynous leks. We review mating systems and behaviors across ungulates and offer a new approach synthesizing how interacting factors may shape those mating systems. Variability exists in mating systems among and within species of ungulates and likely is affected by predation risk, availability of resources (food and mates), habitat structure, and sociality. Ungulate mating systems may be labile as a consequence of the varying strength of those interacting factors. In addition, degree of polygyny and sexual dimorphism in size are associated with the evolution of mating systems. Neither male–male combat nor paternal care, however, can completely explain differences in sexual size dimorphism for ungulates, a necessary component in understanding the development of some mating systems. Whatever the evolutionary pathway, sexual segregation limits paternal care allowing more intense male–male competition. Selection of habitat structure, because it modifies risk of predation, is a major determinant of sociality for ungulates. Likewise, ruggedness and steepness of terrain limit the types of mating systems that can occur because of limitations in group size and cohesiveness, as well as the ability of males to herd even small groups of females effectively. The quality and defensibility of resources affect mating systems, as does the defensibility of females. Population density of females also may be a critical determinant of the types of mating systems that develop. Size of groups likewise constrains the types of mating tactics that males can employ. Our aim was to use those relationships to create a broad conceptual model that predicts how various environmental and social factors interact to structure mating systems in ungulates. This model provides a useful framework for future tests of the roles of both ecological and social conditions in influencing the social systems of ungulates.  相似文献   
107.
Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit, Brachylagus idahoensis; mountain cottontail, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush‐steppe of western North America respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti‐predator behaviors in prey species.  相似文献   
108.

Background  

The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号