首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   21篇
  2023年   1篇
  2022年   10篇
  2021年   18篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   18篇
  2015年   27篇
  2014年   17篇
  2013年   28篇
  2012年   35篇
  2011年   45篇
  2010年   21篇
  2009年   20篇
  2008年   15篇
  2007年   38篇
  2006年   21篇
  2005年   31篇
  2004年   18篇
  2003年   22篇
  2002年   13篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1981年   2篇
  1967年   1篇
排序方式: 共有454条查询结果,搜索用时 15 毫秒
61.
62.
Aim To understand the impact of glacial refugia and migration pathways on the modern genetic diversity of Pinus sylvestris. Location The study was carried out throughout Europe. Methods An extended set of data of pollen and macrofossil remains was used to locate the glacial refugia and reconstruct the migrating routes of P. sylvestris throughout Europe. A vegetation model was used to simulate the extent of the potential refugia during the last glacial period. At the same time a genetic survey was carried out on this species. Results The simulated distribution of P. sylvestris during the last glacial period is coherent with the observed fossil data, which showed a patchy distribution of the refugia between c. 40° N and 50° N. Several migrational fronts were detected within the Iberian and the Italian peninsulas, and outside the Hungarian plain and around the Alps. The modern mitochondrial DNA depicted three different haplotypes for P. sylvestris. Two distinct haplotypes were restricted to northern Spain and Italy, and the third haplotype dominated most of the present‐day remaining distribution range of P. sylvestris in Europe. Main conclusions During the last glacial period P. sylvestris was constrained under severe climatic conditions to survive in scattered and restricted refugial areas. Combining palaeoenvironmental data, vegetation modelling and the genetic data, we have shown that the long‐term isolation in the glacial refugia and the migrational process during the Holocene have played a major role in shaping the modern genetic diversity of P. sylvestris in Europe.  相似文献   
63.
The vasodilatory effect of Globularia alypum L. (GA) extract was evaluated in rat mesenteric arterial bed pre-contracted by continuous infusion of phenylephrine (2-4 ng/mL). Bolus injections of GA elicited dose-response vasodilation, which was abolished after endothelium removal. Addition of a nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (100 μmol/L), alone or in the presence of a cyclooxygenase inhibitor, indomethacin (10 μmol/L), did not significantly affect the vasodilation of the mesenteric arterial bed in response to GA extract. These results suggest that GA-induced vasodilation is endothelium dependent but nitric oxide and prostacyclin independent. In the presence of high K(+) (60 mmol/L), the GA vasodilatory effect was completely abolished, suggesting that the vasodilation effect is mediated by hyperpolarization of the vascular cells. Also, pre-treatment with atropine (a muscarinic receptors antagonist) antagonized the GA-induced vasodilation, suggesting that the vasodilatory effect is mainly mediated by the endothelium-derived hyperpolarizing factor through activation of endothelial muscarinic receptors.  相似文献   
64.
There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-γ expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18. In DENV-3-inoculated IFN-γ(-/-) mice, there was enhanced lethality, which was preceded by severe disease manifestation and virus replication. Lack of IFN-γ production was associated with diminished NO-synthase 2 (NOS2) expression and higher susceptibility of NOS2(-/-) mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-γ-NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice described here represents a significant advance in animal models of severe dengue disease and may provide an important tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection.  相似文献   
65.
66.
67.
The RNA-binding protein HuR affects cell fate by regulating the stability and/or the translation of messenger RNAs that encode cell stress response proteins. In this study, we delineate a novel regulatory mechanism by which HuR contributes to stress-induced cell death. Upon lethal stress, HuR translocates into the cytoplasm by a mechanism involving its association with the apoptosome activator pp32/PHAP-I. Depleting the expression of pp32/PHAP-I by RNA interference reduces both HuR cytoplasmic accumulation and the efficiency of caspase activation. In the cytoplasm, HuR undergoes caspase-mediated cleavage at aspartate 226. This cleavage activity is significantly reduced in the absence of pp32/PHAP-I. Substituting aspartate 226 with an alanine creates a noncleavable isoform of HuR that, when overexpressed, maintains its association with pp32/PHAP-I and delays the apoptotic response. Thus, we propose a model in which HuR association with pp32/PHAP-I and its caspase-mediated cleavage constitutes a regulatory step that contributes to an amplified apoptotic response.  相似文献   
68.
During intraerythrocytic development, the human malaria parasite, Plasmodium falciparum, establishes membrane-bound compartments, known as Maurer's clefts, outside the confines of its own plasma membrane. The Maurer's compartments are thought to be a crucial component of the machinery for protein sorting and trafficking; however, their ultrastructure is only partly defined. We have used electron tomography to image Maurer's clefts of 3D7 strain parasites. The compartments are revealed as flattened structures with a translucent lumen and a more electron-dense coat. They display a complex and convoluted morphology, and some regions are modified with surface nodules, each with a circular cross-section of approximately 25 nm. Individual 25 nm vesicle-like structures are also seen in the erythrocyte cytoplasm and associated with the red blood cell membrane. The Maurer's clefts are connected to the red blood cell membrane by regions with extended stalk-like profiles. Immunogold labelling with specific antibodies confirms differential labelling of the Maurer's clefts and the parasitophorous vacuole and erythrocyte membranes. Spot fluorescence photobleaching was used to demonstrate the absence of a lipid continuum between the Maurer's clefts and parasite membranes and the host plasma membrane.  相似文献   
69.
影响农杆菌介导玉米愈伤组织遗传转化因素的研究   总被引:1,自引:0,他引:1  
用农杆菌介导玉米愈伤组织的转化,其筛选的结果得到的抗性愈伤组织受玉米愈伤组织的继代时 间、浸染的农杆菌菌液浓度、共培养的温度以及其共培养时间等因素的影响。玉米愈伤继代后7~9d,农杆菌 浓度为OD600值0.3左右、共培养温度约22℃、培养时间3d时,抗性愈伤的获得率最高。  相似文献   
70.
Plants may protect themselves against herbivorous arthropods by providing refuges to predatory arthropods, but they cannot prevent herbivores from taking countermeasures or even from reaping the benefits. To understand whether plants benefit from providing self‐made refuges (so‐called domatia), it is not only necessary to determine the fitness consequences for the plant, but also to assess (1) against which factors the refuge provides protection, (2) why predatory arthropods are more likely to monopolise the refuge, and (3) how herbivorous and predatory arthropods respond to and affect each other in and outside the refuge. In this article, we focus on the last aspect by studying the dynamics of refuge use of a predatory mite (Typhlodromalus aripo) and its consequences for a herbivorous mite (Mononychellus tanajoa) on cassava plants in Benin, West Africa. The refuge, located in‐between the leaf primordia of the cassava apex, is thought to provide protection against abiotic factors and/or intraguild predators. To test whether the predator waits for prey in the apex or comes out, we sampled predator‐prey distributions on leaves and in the apex at 4 hour‐intervals over a period of 24 hours. The predatory mites showed pronounced diurnal changes in within‐plant distribution. They were in the apices during the day, moved to the young leaves during night and returned to the apices the next morning. Nocturnal foraging bouts were more frequent when there were more herbivorous mites on the leaves near the apex. However, the foraging predators elicited an avoidance response by mobile stages of their prey, since these were more abundant on the first 20 leaves below the apex during late afternoon, than on the same leaves during night. These field observations on cassava plants show that (1) during daytime predatory mites monopolise the apical domatia, (2) they forage on young leaves during night and (3) elicit avoidance by within‐plant, vertical migration of mobile stages of the herbivorous mites. We hypothesize that cassava plants benefit from apical domatia by acquiring protection for their photosynthetically most active, young parts, because predatory mites (1) protect primordial leaves in the apex, (2) reduce the densities of herbivorous mites on young leaves, and (3) cause herbivorous mites to move down to less profitable older leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号