首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   21篇
  2023年   1篇
  2022年   11篇
  2021年   18篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   18篇
  2015年   27篇
  2014年   17篇
  2013年   28篇
  2012年   35篇
  2011年   45篇
  2010年   21篇
  2009年   20篇
  2008年   15篇
  2007年   38篇
  2006年   21篇
  2005年   31篇
  2004年   18篇
  2003年   22篇
  2002年   13篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1981年   2篇
  1967年   1篇
排序方式: 共有455条查询结果,搜索用时 62 毫秒
51.
Despite significant differences in genetic profiles, cancer cells share common phenotypic properties, including membrane-associated changes that facilitate invasion and metastasis. The Corning Epic optical biosensor was used to monitor dynamic mass rearrangements within and proximal to the cell membrane in tumor cell lines derived from cancers of the colon, bone, cervix, lung and breast. Data was collected in real time and required no exogenously added signaling moiety (signal-free technology). Cell lines displayed unique profiles over the time-courses: the time-courses all displayed initial signal increases to maximal values, but the rate of increase to those maxima and the value of those maxima were distinct for each cell line. The rate of decline following the maxima also differed among cell lines. There were correlations between the signal maxima and the observed metastatic behavior of the cells in xenograft experiments; for most cell types the cells that were more highly metastatic in mice had lower time-course maxima values, however the reverse was seen in breast cancer cells. The unique profiles of these cell lines and the correlation of at least one profile characteristic with metastatic behavior demonstrate the potential utility of biophysical tumor cell profiling in the study of cancer biology.  相似文献   
52.
Mechanisms responsible for limitation of exercise capacity in lung transplant recipients (LR) and benefits gained by exercise training were studied. Mitochondrial respiration parameters, energy transfer, and cell structure were assessed in vastus lateralis biopsies using the permeabilized fiber technique with histochemical and morphometric measurements. Twelve male controls (C) and 12 LR performed exercise training over 12 wk. Before exercise training, there were strong correlations between exercise capacity (maximal O(2) consumption and endurance time at 70% maximal power output) and cellular events, as assessed by percentage of type I fibers and apparent K(m) for exogenous ADP. Anticalcineurins were not involved in LR exercise limitation, since there were no differences in maximal mitochondrial rate of respiration before exercise training and no abnormalities in respiratory chain complexes compared with C. Training resulted in a significant increase in physiological parameters both at the cellular (apparent K(m) for exogenous ADP and stimulating effect of creatine) and integrated (maximal O(2) consumption, power output at ventilatory threshold, maximal power output, and endurance time at 70% maximal power output) levels in LR and C. After the training period, improvements in maximal O(2) consumption and in maximal mitochondrial rate of respiration were noted, as well as changes in endurance time and percentage of type I fibers. Because there were no changes in diameters and fiber types, baseline alteration of apparent K(m) for exogenous ADP and its improvement after training might be related to changes within the intracellular energetic units. After the training period, intracellular energetic units exhibited a higher control of mitochondrial respiration by creatine linked to a more efficient functional coupling adenine nucleotide translocase-mitochondrial creatine kinase, resulting in better exercise performances in C and LR.  相似文献   
53.
54.
During a sustained contraction, electromyographic signals (EMGs) undergo a spectral compression. This fatigue behaviour induces a shift of the mean and the median frequencies to lower frequencies. On the other hand, several studies conclude that the mean/median frequency can increase, decrease or remain constant with an increasing force level. Such inconsistency is embarrassing since the fatigue state may be influenced by the force level. In this paper, we propose a frequency indicator which is sensitive to the force level independently of the fatigue state evaluated at 70% of the maximal voluntary contraction. Ten healthy volunteers participated in the study and both surface EMGs (from the short head of the biceps brachii) and force signals were measured. This study compared force and fatigue effects on the EMGs during short (3-s) isometric contractions at different strength intensities and during a sustained isometric contraction until exhaustion. The EMGs partly show 1/falpha spectral behaviours since their power spectral densities may experimentally fit with two linear segments in a log-log representation. The measured "right" slope produces variations of force as 20 times the variations of fatigue. 1/falpha Behaviour may be related to stochastic fractals. This fractal indicator is a new frequency indicator that is thus complementary to other known classical frequency indicators when studying force during unknown fatigue states.  相似文献   
55.
Fragile X-related 1 protein (FXR1P) is a member of a small family of RNA-binding proteins that includes the Fragile X mental retardation 1 protein (FMR1P) and the Fragile X-related 2 protein (FXR2P). These proteins are thought to transport mRNA and to control their translation. While FMR1P is highly expressed in neurons, substantial levels of FXR1P are found in striated muscles and heart, which are devoid of FMRP and FXR2P. However, little is known about the functions of FXR1P. We have isolated cDNAs for Xenopus Fxr1 and found that two specific splice variants are conserved in evolution. Knockdown of xFxr1p in Xenopus had highly muscle-specific effects, normal MyoD expression being disrupted, somitic myotomal cell rotation and segmentation being inhibited, and dermatome formation being abnormal. Consistent with the absence of the long muscle-specific xFxr1p isoform during early somite formation, these effects could be rescued by both the long and short mRNA variants. Microarray analyses showed that xFxr1p depletion affected the expression of 129 known genes of which 50% were implicated in muscle and nervous system formation. These studies shed significant new light on Fxr1p function(s).  相似文献   
56.
This work presents two stock-effort dynamical models describing the evolution of a fish population growing and moving between two fishing zones, on which it is harvested by a fishing fleet, distributed on the two zones. The first model corresponds to the case of constant displacement rates of the fishing effort, and the second one to fish stock-dependent displacement rates. In equations of the fishing efforts, a control function is introduced as the proportion of the revenue to be invested, for each fleet. The stabilizability analysis of the aggregated model, in the neighborhood of the equilibrium point, enables the determination of a Lyapunov function, which ensures the existence of a stabilizing discontinuous feedback for this model. This enables us to control the system and to lead, in an uniform way, any solution of this system towards this desired equilibrium point.  相似文献   
57.
Atlantic coast in mice. Preliminary studies showed that seawater contains heavy metals from domestic, agricultural and industrial wastes. Marine bivalves concentrate these pollutants by filtration and serve as vectors in human exposure. The objective of this study was to determine the concentration of heavy metals; cadmium (Cd); chromium (Cr), and lead (Pb) in mussels (Mytilus galloprovincialis) collected in two coastal sites; Jorf Lasfar (JL) (neighbouring a phosphate processing platform) and Oualidia (OL) (a vegetable growing area) located at 120 and 190 km south of Casablanca, respectively. Another objective was to test and compare the toxicity of these mussels on mice. The results indicated the presence of heavy metals (Cd, Cr, and Pb) in mussels at different concentrations, depending on the collection period. Higher concentrations were obtained at JL than at OL: for example, Cd concentrations were 80 +/- 15 to 199 +/- 28 versus 23 +/- 5 microg/g mussel dry weight, respectively. Cramming with mussel powder did not increase Cd, Cr, or Pb concentration in either liver or kidneys of treated mice. The relative kidney weights were reduced. Increased glucose urea was observed in animals' urine. Treatment with mussels from OL induced significant reduction (20%) in mice body weight, together with an increase in creatinuria. These results indicate that mussels collected from OL are more harmful than those obtained from JL are. All these mussels should not be recommended for human consumption.  相似文献   
58.
Fibroblast growth factor 6 (FGF6) is selectively expressed during muscle development and regeneration. We examined its effect on muscle precursor cells (mpc) by forcing stable FGF6 expression in C2C12 cells in vitro. FGF6 produced in genetically engineered mpc was active, inducing strong morphological changes, altering cell adhesion and compromising their ability to differentiate into myotubes. Expression of MyoD and myogenin, but not of Myf5, was abrogated in FGF6 engineered mpc. These effects were reversed by FGF inhibitors. Ectopic expression of MyoD also restored fiber formation indicating that FGF6 interferes with the myogenic differentiation pathway upstream of MyoD. We also report that in the presence of FGF6, the minor (0.5-2%) subpopulation of cells actively excluding Hoechst 33342 in a verapamil-dependent manner (SP phenotype) was increased to 15-20% and the expression of the mdr1a gene (but not mdr1b) was upregulated by 400-fold. Our data establish a previously undescribed link between FGF6--a muscle specific growth factor--and a multidrug resistance gene expressed in stem cells, and suggest a role for FGF6 in the maintenance of a reserve pool of progenitor cells in the skeletal muscle.  相似文献   
59.
60.
Aim To understand the impact of glacial refugia and migration pathways on the modern genetic diversity of Pinus sylvestris. Location The study was carried out throughout Europe. Methods An extended set of data of pollen and macrofossil remains was used to locate the glacial refugia and reconstruct the migrating routes of P. sylvestris throughout Europe. A vegetation model was used to simulate the extent of the potential refugia during the last glacial period. At the same time a genetic survey was carried out on this species. Results The simulated distribution of P. sylvestris during the last glacial period is coherent with the observed fossil data, which showed a patchy distribution of the refugia between c. 40° N and 50° N. Several migrational fronts were detected within the Iberian and the Italian peninsulas, and outside the Hungarian plain and around the Alps. The modern mitochondrial DNA depicted three different haplotypes for P. sylvestris. Two distinct haplotypes were restricted to northern Spain and Italy, and the third haplotype dominated most of the present‐day remaining distribution range of P. sylvestris in Europe. Main conclusions During the last glacial period P. sylvestris was constrained under severe climatic conditions to survive in scattered and restricted refugial areas. Combining palaeoenvironmental data, vegetation modelling and the genetic data, we have shown that the long‐term isolation in the glacial refugia and the migrational process during the Holocene have played a major role in shaping the modern genetic diversity of P. sylvestris in Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号