首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   30篇
  235篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   18篇
  2013年   15篇
  2012年   18篇
  2011年   21篇
  2010年   14篇
  2009年   8篇
  2008年   23篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1996年   1篇
  1990年   2篇
  1983年   1篇
  1981年   1篇
  1976年   2篇
  1963年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
61.
A single dose of resveratrol (25 μg/10μl) was injected directly into the right lateral cerebral ventricle (icv) of Wistar rats via an implanted cannula in order to study the analgesic properties of the compound. A control group of rats received 10 μl NaCl 0.9%. The lengthening of the time to reaction to painful stimuli was assessed in the radiant heat tail-flick latency time test. In this study, the response to painful stimuli of the animals treated with resveratrol had a bimodal profile with hypoalgesia or hyperalgesia. In the selected experimental conditions, resveratrol had a definite analgesic effect; the increase in time to reaction ranged from 100-120% (8 rats) to 600-700% (9 rats). In this experiment resveratrol exerts evident central antalgic effects in the majority of rats, which are related to the individual level of excitation and vigilance at baseline. Antinociceptive induced by resveratrol icv injection was maximal at 4-10 min and lasted no longer than 15 min. The effect of resveratrol to produce analgesia after a single icv injection may be interesting for preventing chronic pain.  相似文献   
62.

Background  

More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure.  相似文献   
63.

Background  

The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections.  相似文献   
64.
CotE is a morphogenic protein that controls the assembly of the coat, the proteinaceous structure that surrounds and protects the spore of Bacillus subtilis. CotE has long been thought to interact with several outer coat components, but such interactions were hypothesized from genetic experiment results and have never been directly demonstrated. To study the interaction of CotE with other coat components, we focused our attention on CotC and CotU, two outer coat proteins known to be under CotE control and to form a heterodimer. We report here the results of pull-down experiments that provide the first direct evidence that CotE contacts other coat components. In addition, coexpression experiments demonstrate that CotE is needed and sufficient to allow formation of the CotC-CotU heterodimer in a heterologous host.The spore of Bacillus subtilis is a dormant cell, resistant to harsh conditions and able to survive extreme environmental conditions (25). Spores are produced in a sporangium that consists of an inner cell, the forespore, that will become the mature spore and an outer cell, the mother cell, that will lyse, liberating the mature spore (18, 26). Resistance of the spore to noxious chemicals, lytic enzymes, and predation by soil protozoans is in part due to the coat, a complex, multilayered structure of more than 50 proteins that encases the spore (5, 8, 13). Proteins that constitute the coat are produced in the mother cell and deposited around the outer membrane surface of the forespore in an ordered manner (8).A small subset of coat proteins have a regulatory role on the formation of the coat. Those proteins, referred to as morphogenic factors, do not affect the synthesis of the coat components but drive their correct assembly outside of the outer forespore membrane (8). Within this subset of regulatory coat proteins, SpoIVA and CotE play a crucial role. SpoIVA (6, 20, 23) is assembled into the basement layer of the coat and is anchored to the outer membrane of the forespore through its C terminus that contacts SpoVM, a small, amphipathic peptide embedded in the forespore membrane (16, 21, 22). A spoIVA-null mutation impairs the assembly of the coat around the forming spore, and as a consequence, coat material accumulates in the mother cell cytoplasm (23).CotE (28) assembles into a ring and surrounds the SpoIVA basement structure. The inner layer of the coat is then formed between the SpoIVA basement layer and the CotE ring by coat components produced in the mother cell that infiltrate through the CotE ring, while the outer layer of the coat is formed outside of CotE (6). However, not all CotE molecules are assembled into the ring-like structure, and CotE molecules are also found in the mother cell cytoplasm, at least up to 8 h after the start of sporulation (3). CotE was first identified as a morphogenic factor in a seminal study in which an ultrastructural analysis indicated that a cotE-null mutation prevented formation of the electron-dense outer layer of the coat while it did not affect inner coat formation (28). A subsequent mutagenesis study has revealed that CotE has a modular structure with a C-terminal domain involved in directing the assembly of various coat proteins, an internal domain involved in the targeting of CotE to the forespore, and a N-terminal domain that, together with the internal domain, directs the formation of CotE multimers (17). More recently, formation of CotE multimers has been also confirmed by a yeast two-hybrid approach (14). In a global study of protein interactions in the B. subtilis coat, performed by a fluorescence microscopy analysis of a collection of strains carrying cot-gfp fusions, CotE has been proposed to interact with most outer coat components (12).From those and other studies, the interactions of CotE with coat structural components have been exclusively inferred on the basis of genetic experiment results, i.e., cotE mutants that failed to assemble one or more coat components. Evidence of a direct interaction between CotE and another coat component has never been provided. We addressed this issue by using as a model two coat components, CotC and CotU, known to be controlled by CotE and to form a heterodimer (10, 28).CotC is an abundant, 66-amino-acid protein known to assemble in the outer coat in various forms: a monomer of 12 kDa, a homodimer of 21 kDa, and two less abundant forms of 12.5 and 30 kDa, probably due to posttranslational modifications of CotC (9). CotU is a structural homolog of CotC of 86 amino acids. The two proteins, which share an almost identical N terminus and a less conserved C terminus, interact, originating the formation of a heterodimer of 23 kDa (10). Heterodimer formation most likely requires a B. subtilis-specific factor since it does not occur in Escherichia coli or Saccharomyces cerevisiae (10). CotC and CotU are synthesized in the mother cell compartment of the sporulating cell but do not accumulate there since they are immediately assembled around the forming spore (10). In a strain carrying a cotE-null mutation, CotC and CotU, together with all other outer coat components, do not assemble around the forming spore (10). CotC and CotU are also dependent on CotH, an additional morphogenic factor involved in coat formation (9). A cotH-null mutation prevents CotC and CotU assembly in the coat as well as their accumulation in the mother cell cytoplasm (10). Since a mutation causing cotH overexpression allows CotC and CotU accumulation in the mother cell cytoplasm (1), it has been proposed that CotH acts by stabilizing CotC and CotU in the mother cell cytoplasm (1, 10).Here we provide the first direct evidence that CotE interacts with two other coat components, CotC and CotU, and show that CotE is essential and sufficient to mediate CotC-CotU interaction to form a heterodimer.  相似文献   
65.
Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical–physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.  相似文献   
66.
Biomechanics and Modeling in Mechanobiology - Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become...  相似文献   
67.
Mitochondria are the main source of reactive oxygen species (ROS). The aim of this work was to verify the ROS generation in situ in HeLa cells exposed to prooxidants and antioxidants (menadione, tert-butyl hydroperoxide, antimycin A, vitamin E, N-acetyl-l-cysteine, and butylated hydroxytoluene) using the ROS-sensitive probes 6-carboxy-2,7-dichlorodihydrofluorescein diacetate di-acetomethyl ester (DCDHF) and dihydrofluorescein diacetate (DHF). Mitochondria were counterstained with the potential-sensitive probe tetramethylrhodamine methyl ester perchlorate (TMRM). Both DCDHF and DHF were able to detect the presence of ROS in mitochondria, though with distinct morphological features. DCDHF fluorescence was invariably blurred, smudged, and spread over the cytoplasm surrounding the major mitochondrial clusters. On the contrary, DHF fluorescence was sharp and delineated thin filaments which corresponded in all details to TMRM-stained mitochondria. These data suggest that DCDHF does not reach the mitochondrial matrix but is oxidized by ROS released by mitochondria in the cytosol. On the other hand, DHF enters mitochondria and reacts with ROS released in the matrix. Cytosolic (DCDHF+) ROS but not matrix (DHF+) ROS, were significantly decreased by vitamin E. N-acetyl-l-cysteine was effective in reducing DCDHF and DHF photooxidation in the medium, but was unable to reduce intracellular ROS. ROS generation was accompanied by partial mitochondrial depolarization.  相似文献   
68.
Complement activation determines the therapeutic activity of rituximab in vivo   总被引:16,自引:0,他引:16  
Rituximab is an anti-CD20 chimeric mAb effective for the treatment of B-NHL. It can lyse lymphoma cells in vitro through both C- and Ab-dependent cellular cytotoxicity. The mechanism of action of rituximab in vivo is however still unclear. We have set up a new in vivo model in nonimmunodeficient mice by stable transduction of the human CD20 cDNA in the murine lymphoma line EL4. Animals injected i.v. with the EL4-CD20(+) lymphoma cells died within 30 days with evident liver, spleen, and bone marrow involvement, confirmed by immunohistochemistry and PCR analysis. A single injection of rituximab or the murine anti-CD20 Ab 1F5, given i.p. 1 day after the tumor, cured 100% of the animals. Indeed, at week 4 after tumor cell inoculation, CD20(+) cells were undetectable in all organs analyzed in rituximab-treated animals, as determined by immunohistochemistry and PCR. Rituximab had no direct effect on tumor growth in vitro. Depletion of either NK cells or neutrophils or both in tumor-injected animals did not affect the therapeutic activity of the drug. Similarly, rituximab was able to eradicate tumor cells in athymic nude mice, suggesting that its activity is T cell independent. In contrast, the protective activity of rituximab or the 1F5 Ab was completely abolished in syngeneic knockout animals lacking C1q, the first component of the classical pathway of C (C1qa(-/-)). These data demonstrate that C activation is fundamental for rituximab therapeutic activity in vivo.  相似文献   
69.
Recent studies indicate that, whereas the Sardinian population as a whole is comparable to outbred populations for linkage disequilibrium (LD) mapping of common variants, LD in Sardinian sub-isolates is more extended, making these populations particularly suitable for this approach. To evaluate the extent of LD between microsatellite markers, we compared different sub-populations within Sardinia selected on the basis of their geographical position and isolation: two small isolated villages (Talana, Urzulei), two larger but remote areas (Ogliastra, Nuoro province) and a cohort of samples representing the wider Sardinian population. LD analysis was carried out by using six microsatellite markers that are located on Xq13.3 and that have been extensively studied in different populations. We found different extents and patterns of LD in the sub-population samples depending on their degree of isolation and demographic history. All LD measurements and haplotype analyses indicate that there is a decreasing trend from Talana (the most inbred population, LD up to 9.5-11.5 Mb) to the more outbred Sardinian population (LD only for intervals <2 Mb). In one village (Talana), five haplotype classes accounting for 80% of the entire sample perfectly matched five Ogliastra clusters, supporting the origin of the village from the Ogliastra genetic pool. In contrast, the other village (Urzulei) showed a different pattern of haplotypes with a closer relationship to the Nuoro region sub-population. LD analyses therefore show that even neighbouring isolate villages may differ in their genetic background. Here, we highlight the importance of selecting appropriate populations and/or sub-populations for the analysis of complex traits. Isolated sub-populations showing different extents of LD can provide a powerful method for mapping complex traits by LD scanning at relatively low marker density.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号