首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   17篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   15篇
  2013年   11篇
  2012年   12篇
  2011年   13篇
  2010年   12篇
  2009年   9篇
  2008年   17篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   7篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1983年   2篇
  1976年   2篇
  1963年   1篇
排序方式: 共有191条查询结果,搜索用时 31 毫秒
181.
Climate of the Legler lignite paleoflora (Miocene, New Jersey, U.S.A.) was estimated using the Bailey system of bioclimatology. The data indicate that the Legler climate was warm, very temperate, with short, periodic frosts, and had ample precipitation with no dry season. New Jersey climate is now colder and has much greater frost frequencies.  相似文献   
182.
MicroRNAs (miRNAs) are important regulators of heart function and then an intriguing therapeutic target for plenty of diseases. The problem raised is that many data in this area are contradictory, thus limiting the use of miRNA‐based therapy. The goal of this review is to describe the hub‐mechanisms regulating the biogenesis and function of miRNAs, which could help in clarifying some contradictions in the miRNA world. With this scope, we analyse an array of factors, including several known agents of stress response, mediators of epigenetic changes, regulators of alternative splicing, RNA editing, protein synthesis and folding and proteolytic systems. All these factors are important in cardiovascular function and most of them regulate miRNA biogenesis, but their influence on miRNAs was shown for non‐cardiac cells or some specific cardiac pathologies. Finally, we consider that studying the stress response factors, which are upstream regulators of miRNA biogenesis, in the diseased heart could help in (1) explaining some contradictions concerning miRNAs in heart pathology, (2) making the role of miRNAs in pathogenesis of cardiovascular disease more clear, and therefore, (3) getting powerful targets for its molecular therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
183.
184.
The formation of inclusion complexes between cyclodextrins (cyclohexa-, cyclohepta-, and cyclooctamylose) and either 1-anilinonaphthalene-8-sulfonate or 2-p-toluidinylnaphthalene-6-sulfonate was investigated by ionspray mass spectrometry operated both in the positive and in the negative ion mode. This soft ionisation technique allowed the detection of the inclusion complexes; the presence of false positives was excluded by increasing the voltage at the orifice which caused breakage of the electrostatic adducts and some fragmentation of the free cyclodextrin molecules, but left the inclusion complexes intact. The spectra recorded in the negative mode showed the presence of complexes formed by two cyclodextrin molecules and one aromatic molecule; such stoichiometry was not detected in the positive mode.  相似文献   
185.
Summary Rhizobium deoxyribonucleic acid has been detected within Vicia faba root cells by in situ hybridization and autoradiography after exposure of root apexes to Rhizobium viable cells. Reannealed regions are localized into the cortex cells; the presence of bacterial DNA is specific for the root tissue; labelled regions were not detectable within apexes exposed to non-nodulating strains or to bacteria other than Rhizobium; Rhizobium DNA was not detectable in tissues of plants other than its leguminous host. re]19750313  相似文献   
186.
187.

Background  

Defensins, small endogenous peptides with antimicrobial activity, are pivotal components of the innate immune response. A large cluster of defensin genes is located on human chromosome 8p; among them the beta defensin 1 (DEFB1) promoterhas been extensively studied since discovery that specific polymorphisms and haplotypes associate with asthma and atopy, susceptibility to severe sepsis, as well as HIV and Candida infection predisposition.  相似文献   
188.
189.
Cells adapt to their environment and stimuli of different origin. During confined migration through sub-cellular and sub-nuclear pores, they can undergo large strains and the nucleus, the most voluminous and the stiffest organelle, plays a critical role. Recently, patterned microfluidic devices have been employed to analyze the cell mechanical behavior and the nucleus self-deformations. In this paper, we present an in silico model to simulate the interactions between the cell and the underneath microstructured substrate under the effect of the sole gravity. The model lays on mechanical features only and it has the potential to assess the contribution of the nuclear mechanics on the cell global behavior. The cell is constituted by the membrane, the cytosol, the lamina, and the nucleoplasm. Each organelle is described through a constitutive law defined by specific mechanical parameters, and it is composed of a fluid and a solid phase leading to a viscoelastic behavior. Our main objective is to evaluate the influence of such mechanical components on the nucleus behavior. We have quantified the stress and strain distributions in the nucleus, which could be responsible of specific phenomena such as the lamina rupture or the expression of stretch-sensitive proteins.  相似文献   
190.

Background  

A very high prevalence (22.3%) of gestational diabetes mellitus (GDM) was recently reported following our study on a large group of Sardinian women. In order to explain such a high prevalence we sought to characterise our obstetric population through the analysis of risk factors and their association with the development of GDM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号