首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6726篇
  免费   608篇
  国内免费   1篇
  2023年   57篇
  2022年   151篇
  2021年   251篇
  2020年   130篇
  2019年   133篇
  2018年   158篇
  2017年   142篇
  2016年   236篇
  2015年   355篇
  2014年   406篇
  2013年   478篇
  2012年   595篇
  2011年   633篇
  2010年   336篇
  2009年   299篇
  2008年   356篇
  2007年   364篇
  2006年   352篇
  2005年   296篇
  2004年   263篇
  2003年   260篇
  2002年   265篇
  2001年   49篇
  2000年   50篇
  1999年   65篇
  1998年   53篇
  1997年   47篇
  1996年   38篇
  1995年   41篇
  1994年   33篇
  1993年   25篇
  1992年   31篇
  1991年   24篇
  1990年   16篇
  1989年   22篇
  1988年   19篇
  1987年   13篇
  1986年   11篇
  1985年   16篇
  1984年   25篇
  1983年   21篇
  1982年   14篇
  1981年   16篇
  1980年   17篇
  1979年   12篇
  1978年   12篇
  1977年   12篇
  1976年   16篇
  1975年   16篇
  1970年   10篇
排序方式: 共有7335条查询结果,搜索用时 19 毫秒
991.
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.  相似文献   
992.
Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.  相似文献   
993.
Allele diversities of four markers specific to intron three, exon four and promoter regions of the aluminum (Al) resistance gene of wheat (Triticum aestivum L.) TaALMT1 were compared in 179 common wheat cultivars used in international wheat breeding programs. In wheat cultivars released during the last 93 years, six different promoter types were identified on the basis of allele size. A previous study showed that Al resistance was not associated with a particular coding allele for TaALMT1 but was correlated with blocks of repeated sequence upstream of the coding sequence. We verified the linkage between these promoter alleles and Al resistance in three doubled haploid and one intercross populations segregating for Al resistance. Molecular and pedigree analysis suggest that Al resistance in modern wheat germplasm is derived from several independent sources. Analysis of a population of 278 landraces and subspecies of wheat showed that most of the promoter alleles associated with Al resistance pre-existed in Europe, the Middle East and Asia prior to dispersal of cultivated germplasm around the world. Furthermore, several new promoter alleles were identified among the landraces surveyed. The TaALMT1 promoter alleles found within the spelt wheats were consistent with the hypothesis that these spelts arose on several independent occasions from hybridisations between non-free-threshing tetraploid wheats and Al-resistant hexaploid bread wheats. The strong correlation between Al resistance and Al-stimulated malate efflux from the root apices of 49 diverse wheat genotypes examined was consistent with the previous finding that Al resistance in wheat is conditioned primarily by malate efflux. These results demonstrate that the markers based on intron, exon and promoter regions of TaALMT1 can trace the inheritance of the Al resistance locus within wheat pedigrees and track Al resistance in breeding programmes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
994.
Ferritins are a class of iron storage protein spheres found mainly in the liver and spleen, which have attracted many research interests due to their unique structural features and biological properties. Recently, ferritin and apoferritin (ferritin devoid of the iron core), have been employed as chemically addressable nanoscale building blocks for functional materials development. However, the reactive residues of apoferritin or ferritin have never been specified and it is still unclear about the chemoselectivity of apoferritin towards different kinds of bioconjugation reagents. In this work, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry combined with enzymatic digestion analysis was used to identify the reactive lysine residues of horse spleen apoferritin when conjugated with N-hydroxysuccinimide reagents. The result demonstrated that among all the lysine residues, K97, K83, K104, K67 and K143 are the reactive ones that can be addressed.  相似文献   
995.
To provide information on the transmission dynamics of cryptosporidial infections in domestic small ruminants and the potential role of sheep and goats as a source for human cryptosporidiosis, Cryptosporidium-positive isolates from 137 diarrheic lambs and 17 goat kids younger than 21 days of age were examined by using genotyping and subtyping techniques. Fecal specimens were collected between 2004 and 2006 from 71 sheep and 7 goat farms distributed throughout Aragón (northeastern Spain). Cryptosporidium parvum was the only species identified by restriction analyses of PCR products from small-subunit rRNA genes from all 154 microscopy-positive isolates and the sequencing of a subset of 50 isolates. Sequence analyses of the glycoprotein (GP60) gene revealed extensive genetic diversity within the C. parvum strains in a limited geographical area, in which the isolates from lambs exhibited 11 subtypes in two subtype families (IId and IIa) and those from goat kids displayed four subtypes within the family IId. Most isolates (98%) belonged to the subtype family IId, whereas only three isolates belonged to the most widely distributed family, IIa. Three of the four most prevalent subtypes (IIdA17G1a, IIdA19G1, and IIdA18G1) were previously identified in humans, and five subtypes (IIdA14G1, IIdA15G1, IIdA24G1, IIdA25G1, and IIdA26G1) were novel subtypes. All IId subtypes were identical to each other in the nonrepeat region, except for subtypes IIdA17G1b and IIdA22G1, which differed by a single nucleotide polymorphism downstream of the trinucleotide repeats. These findings suggest that lambs and goat kids are an important reservoir of the zoonotic C. parvum subtype family IId for humans.  相似文献   
996.
The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.  相似文献   
997.
ATM (ataxia-telangiectasia mutated), ATR (ATM- and Rad3-related) and DNA-PK (DNA-dependent protein kinase), important regulators of genome stability, belong to the PIKK (phosphoinositide 3-kinase-like kinase) family of protein kinases. In the present study, DNA-affinity chromatography was used to identify DNA-binding proteins phosphorylated by these kinases. This resulted in the identification of FUS (fused in sarcoma)/TLS (translocated in liposarcoma) as an in vitro target of the PIKKs. FUS is a member of the Ewing's sarcoma family of proteins that appears to play a role in regulating genome stability, since mice lacking FUS show chromosomal instability and defects in meiosis. The residues in FUS that are phosphorylated in vitro and in vivo were identified, and phospho-specific antibodies were generated to demonstrate that FUS becomes phosphorylated at Ser(42) in vivo, primarily in response to agents that cause DSBs (double-strand breaks). DSB-induced FUS phosphorylation in vivo at Ser(42) requires ATM and not DNA-PK. Although Ser(42) is retained in the oncogenic FUS-CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein 10] fusion generated by a t(12;16)(q13;p11) chromosomal translocation, Ser(42) in FUS-CHOP is not phosphorylated after DNA damage. These results identify FUS as a new target of the ATM-signalling pathway and strengthen the notion that FUS regulates genome stability.  相似文献   
998.
Enzymes that degrade nucleic acids are emerging as important players in the pathogenesis of inflammatory disease. This is exemplified by the recent identification of four genes that cause the childhood inflammatory disorder, Aicardi-Goutières syndrome (AGS). This is an autosomal recessive neurological condition whose clinical and immunological features parallel those of congenital viral infection. The four AGS genes encode two nucleases: TREX1 and the hetero-trimeric Ribonuclease H2 (RNase H2) complex. The biochemical activity of these enzymes was initially characterised 30 years ago but a role in neurological inflammation was entirely unanticipated until they were found to be mutated in AGS. This has led to a hypothesis that accumulation of intracellular nucleic acids occurs as a consequence of mutation in these enzymes and triggers an inflammatory response through activation of innate immune pattern recognition receptors.  相似文献   
999.
Assignment of physical meaning to mass spectrometry (MS) data peaks is an important scientific challenge for metabolomics investigators. Improvements in instrumental mass accuracy reduce the number of spurious database matches, however, this alone is insufficient for accurate, unique high-throughput assignment. We present a method for clustering MS instrumental artifacts and a stochastic local search algorithm for the automated assignment of large, complex MS-based metabolomic datasets. Artifact peaks and their associated source peaks are grouped into “instrumental clusters.” Instrumental clusters, peaks grouped together by shared peak shape in the temporal domain, serve as a guide for the number of assignments necessary to completely explain a given dataset. We refine mass only assignments through the intersection of peak correlation pairs with a database of biochemically relevant interaction pairs. Further refinement is achieved through a stochastic local search optimization algorithm that selects individual assignments for each instrumental cluster. The algorithm works by choosing the peak assignment that maximally explains the connectivity of a given cluster. We demonstrate that this methodology provides a significant advantage over standard methods for the assignment of metabolites in a UPLC-MS diabetes dataset. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号