首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6683篇
  免费   608篇
  国内免费   1篇
  2023年   48篇
  2022年   119篇
  2021年   251篇
  2020年   130篇
  2019年   133篇
  2018年   158篇
  2017年   142篇
  2016年   236篇
  2015年   355篇
  2014年   406篇
  2013年   478篇
  2012年   595篇
  2011年   633篇
  2010年   336篇
  2009年   299篇
  2008年   356篇
  2007年   364篇
  2006年   352篇
  2005年   296篇
  2004年   263篇
  2003年   260篇
  2002年   265篇
  2001年   49篇
  2000年   50篇
  1999年   65篇
  1998年   53篇
  1997年   47篇
  1996年   38篇
  1995年   41篇
  1994年   33篇
  1993年   25篇
  1992年   31篇
  1991年   24篇
  1990年   16篇
  1989年   22篇
  1988年   19篇
  1987年   13篇
  1986年   11篇
  1985年   16篇
  1984年   25篇
  1983年   21篇
  1982年   14篇
  1981年   16篇
  1980年   17篇
  1979年   12篇
  1978年   12篇
  1977年   12篇
  1976年   16篇
  1975年   16篇
  1970年   10篇
排序方式: 共有7292条查询结果,搜索用时 15 毫秒
101.
Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts—the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10‐day experiment. Specifically, four ‘best performer’ coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2, bacterial exposure, or combined stressors, whereas four ‘worst performer’ genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.  相似文献   
102.
Probiotics and Antimicrobial Proteins - Lactose intolerance is a common condition caused by lactase deficiency and may result in symptoms of lactose malabsorption (bloating, flatulence, abdominal...  相似文献   
103.
104.
There is mounting evidence that the deoxygenation of coastal marine ecosystems has been underestimated, particularly in the tropics. These physical conditions appear to have far‐reaching consequences for marine communities and have been associated with mass mortalities. Yet little is known about hypoxia in tropical habitats or about the effects it has on reef‐associated benthic organisms. We explored patterns of dissolved oxygen (DO) throughout Almirante Bay, Panama and found a hypoxic gradient, with areas closest to the mainland having the largest diel variation in DO, as well as more frequent persistent hypoxia. We then designed a laboratory experiment replicating the most extreme in situ DO regime found on shallow patch reefs (3 m) to assess the response of the corallivorous fireworm, Hermodice carnaculata to hypoxia. Worms were exposed to hypoxic conditions (8 hr ~ 1 mg/L or 3.2 kPa) 16 times over an 8‐week period, and at 4 and 8 weeks, their oxygen consumption (respiration rates) was measured upon reoxygenation, along with regrowth of severed gills. Exposure to low DO resulted in worms regenerating significantly larger gills compared to worms under normoxia. This response to low DO was coupled with an ability to maintain elevated oxygen consumption/respiration rates after low DO exposure. In contrast, worms from the normoxic treatment had significantly depressed respiration rates after being exposed to low DO (week 8). This indicates that oxygen‐mediated plasticity in both gill morphology and physiology may confer tolerance to increasingly frequent and severe hypoxia in one important coral predator associated with reef decline.  相似文献   
105.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   
106.
Changed fire regimes and the introduction of rabbits, cats, foxes, and large exotic herbivores have driven widespread ecological catastrophe in Australian arid and semi‐arid zones, which encompass over two‐thirds of the continent. These threats have caused the highest global mammal extinction rates in the last 200 years, as well as significantly undermining social, economic, and cultural practices of Aboriginal peoples of this region. However, a new and potentially more serious threat is emerging. Buffel grass (Cenchrus ciliaris L.) is a globally significant invader now widespread across central Australia, but the threat this ecological transformer species poses to biodiversity, ecosystem function, and culture has received relatively little attention. Our analyses suggest threats from buffel grass in arid and semi‐arid areas of Australia are at least equivalent in magnitude to those posed by invasive animals and possibly higher, because unlike these more recognized threats, buffel has yet to occupy its potential distribution. Buffel infestation also increases the intensity and frequency of wildfires that affect biodiversity, cultural pursuits, and productivity. We compare the logistical and financial challenges of creating and maintaining areas free of buffel for the protection of biodiversity and cultural values, with the creation and maintenance of refuges from introduced mammals or from large‐scale fire in natural habitats. The scale and expense of projected buffel management costs highlight the urgent policy, research, and financing initiatives essential to safeguard threatened species, ecosystems, and cultural values of Aboriginal people in central Australia.  相似文献   
107.
108.
109.
110.
Background and AimsUnderstanding impacts of altered disturbance regimes on community structure and function is a key goal for community ecology. Functional traits link species composition to ecosystem functioning. Changes in the distribution of functional traits at community scales in response to disturbance can be driven not only by shifts in species composition, but also by shifts in intraspecific trait values. Understanding the relative importance of these two processes has important implications for predicting community responses to altered disturbance regimes.MethodsWe experimentally manipulated fire return intervals in replicated blocks of a fire-adapted, longleaf pine (Pinus palustris) ecosystem in North Carolina, USA and measured specific leaf area (SLA), leaf dry matter content (LDMC) and compositional responses along a lowland to upland gradient over a 4 year period. Plots were burned between zero and four times. Using a trait-based approach, we simulate hypothetical scenarios which allow species presence, abundance or trait values to vary over time and compare these with observed traits to understand the relative contributions of each of these three processes to observed trait patterns at the study site. We addressed the following questions. (1) How do changes in the fire regime affect community composition, structure and community-level trait responses? (2) Are these effects consistent across a gradient of fire intensity? (3) What are the relative contributions of species turnover, changes in abundance and changes in intraspecific trait values to observed changes in community-weighted mean (CWM) traits in response to altered fire regime?Key ResultsWe found strong evidence that altered fire return interval impacted understorey plant communities. The number of fires a plot experienced significantly affected the magnitude of its compositional change and shifted the ecotone boundary separating shrub-dominated lowland areas from grass-dominated upland areas, with suppression sites (0 burns) experiencing an upland shift and annual burn sites a lowland shift. We found significant effects of burn regimes on the CWM of SLA, and that observed shifts in both SLA and LDMC were driven primarily by intraspecific changes in trait values.ConclusionsIn a fire-adapted ecosystem, increased fire frequency altered community composition and structure of the ecosystem through changes in the position of the shrub line. We also found that plant traits responded directionally to increased fire frequency, with SLA decreasing in response to fire frequency across the environmental gradient. For both SLA and LDMC, nearly all of the observed changes in CWM traits were driven by intraspecific variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号