首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7301篇
  免费   674篇
  国内免费   1篇
  7976篇
  2024年   7篇
  2023年   60篇
  2022年   156篇
  2021年   271篇
  2020年   151篇
  2019年   155篇
  2018年   170篇
  2017年   164篇
  2016年   263篇
  2015年   393篇
  2014年   446篇
  2013年   519篇
  2012年   657篇
  2011年   668篇
  2010年   362篇
  2009年   322篇
  2008年   398篇
  2007年   409篇
  2006年   376篇
  2005年   323篇
  2004年   281篇
  2003年   298篇
  2002年   277篇
  2001年   74篇
  2000年   69篇
  1999年   78篇
  1998年   55篇
  1997年   48篇
  1996年   39篇
  1995年   38篇
  1994年   30篇
  1993年   28篇
  1992年   42篇
  1991年   30篇
  1990年   19篇
  1989年   16篇
  1988年   21篇
  1987年   23篇
  1986年   20篇
  1985年   24篇
  1984年   19篇
  1983年   17篇
  1982年   10篇
  1981年   13篇
  1980年   15篇
  1979年   13篇
  1978年   10篇
  1976年   11篇
  1972年   8篇
  1970年   7篇
排序方式: 共有7976条查询结果,搜索用时 0 毫秒
71.
Phospholipase A2(s) (PLA2(s)) are a family of enzymes that is present in a variety of mammalian and nonmammalian sources. Phagocytic cells contain cytosolic PLA2 (cPLA2) as well as several types of secreted PLA2, all of which have the potential to produce proinflammatory lipid mediators. The role of the predominant form of cPLA2 present in neutrophils is cPLA2alpha was studied by many groups. By modulating its expression in a variety of phagocytes it was found that it plays a major role in formation of eicosanoids. In addition, it was reported that cPLA2alpha also regulates the NADPH oxidase activation. The specificity of its effect on the NADPH oxidase is evident by results demonstrating that the differentiation process as well as other phagocytic functions are normal in cPLA2alpha-deficient PLB cell model. The novel dual subcellular localization of cPLA2alpha in different compartments, in the plasma membranes and in the nucleus, provides a molecular mechanism for the participation of cPLA2alpha in different processes (stimulation of NADPH oxidase and formation of eicosanoids) in the same cells.  相似文献   
72.

Background

We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study.

Methods/Principal Findings

The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)per allele = 0.66; 95% credible interval (CI) = 0.44–1.00) and rs6005835 (median ORper allele  = 0.69; 95% CI  = 0.53–0.91) in CHEK2, rs2078486 (median ORper allele  = 1.65; 95% CI = 1.21–2.25) and rs12951053 (median ORper allele  = 1.65; 95% CI = 1.20–2.26) in TP53, rs411697 (median OR rare homozygote  = 0.53; 95% CI  = 0.35 – 0.79) in BACH1 and rs10131 (median OR rare homozygote  =  not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study.

Conclusions/Significance

Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.  相似文献   
73.
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling.  相似文献   
74.
Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth.  相似文献   
75.
Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise.  相似文献   
76.
In the geological record, fossil phosphatic stromatolites date back to the Great Oxidation Event in the Paleoproterozoic, but living phosphatic stromatolites have not been described previously. Here, we report on cyanobacterial stromatolites in a supratidal freshwater environment at Cape Recife, South African southern coast, precipitating Ca carbonate alternating with episodes of Ca phosphate deposition. In their structure and composition, the living stromatolites from Cape Recife closely resemble their fossilized analogues, showing phosphatic zonation, microbial casts, tunnel structures and phosphatic crusts of biogenic origin. The microbial communities appear to be also similar to those proposed to have formed fossil phosphatic stromatolites. Phosphatic domains in the material from Cape Recife are spatially and texturally associated with carbonate precipitates, but form distinct entities separated by sharp boundaries. Electron Probe Micro‐Analysis shows that Ca/P ratios and the overall chemical compositions of phosphatic precipitates are in the range of octacalcium phosphate, amorphous tricalcium phosphate and apatite. The coincidence in time of the emergence of phosphatic stromatolites in the fossil record with a major episode of atmospheric oxidation led to the assumption that at times of increased oxygen release the underlying increased biological production may have been linked to elevated phosphorus availability. The stromatolites at Cape Recife, however, form in an environment where ambient phosphorus concentrations do not exceed 0.28 μM, one to two orders of magnitude below the previously predicted minimum threshold of >5 μM for biogenic phosphate precipitation in paleo‐systems. Accordingly, we contest the previously proposed suitability of phosphatic stromatolites as a proxy for high ambient phosphate concentrations in supratidal to shallow ocean settings in earth history.  相似文献   
77.
Marine sponges are diverse, abundant and provide a crucial coupling point between benthic and pelagic habitats due to their high filtration rates. They also harbour extensive microbial communities, with many microbial phylotypes found exclusively in sponge hosts and not in the seawater or surrounding environment, i.e. so‐called sponge‐specific clusters (SCs) or sponge‐ and coral‐specific clusters (SCCs). We employed DNA (16S rRNA gene) and RNA (16S rRNA)‐based amplicon pyrosequencing to investigate the effects of sublethal thermal stress on the bacterial biosphere of the Great Barrier Reef sponge Rhopaloeides odorabile. A total of 8381 operational taxonomic units (OTUs) (97% sequence similarity) were identified, affiliated with 32 bacterial phyla from seawater samples, 23 bacterial phyla from sponge DNA extracts and 18 bacterial phyla from sponge RNA extracts. Sublethal thermal stress (31°C) had no effect on the present and/or active portions of the R. odorabile bacterial community but a shift in the bacterial assemblage was observed in necrotic sponges. Over two‐thirds of DNA and RNA sequences could be assigned to previously defined SCs/SCCs in healthy sponges whereas only 12% of reads from necrotic sponges could be assigned to SCs/SCCs. A rapid decline in host health over a 1°C temperature increment suggests that sponges such as R. odorabile may be highly vulnerable to the effects of global climate change.  相似文献   
78.
In eukaryotes, GPI (glycosylphosphatidylinositol) lipid anchoring of proteins is an abundant post-translational modification. The attachment of the GPI anchor is mediated by GPI-T (GPI transamidase), a multimeric, membrane-bound enzyme located in the ER (endoplasmic reticulum). Upon modification, GPI-anchored proteins enter the secretory pathway and ultimately become tethered to the cell surface by association with the plasma membrane and, in yeast, by covalent attachment to the outer glucan layer. This work demonstrates a novel in vivo assay for GPI-T. Saccharomyces cerevisiae INV (invertase), a soluble secreted protein, was converted into a substrate for GPI-T by appending the C-terminal 21 amino acid GPI-T signal sequence from the S. cerevisiae Yapsin 2 [Mkc7p (Y21)] on to the C-terminus of INV. Using a colorimetric assay and biochemical partitioning, extracellular presentation of GPI-anchored INV was shown. Two human GPI-T signal sequences were also tested and each showed diminished extracellular INV activity, consistent with lower levels of GPI anchoring and species specificity. Human/fungal chimaeric signal sequences identified a small region of five amino acids that was predominantly responsible for this species specificity.  相似文献   
79.

Objective

To determine the relationship between high vaginal pro-inflammatory cytokines and cervical shortening in women at high risk of spontaneous preterm labor and to assess the influence of cervical cerclage and vaginal progesterone on this relationship.

Methods

This prospective longitudinal observational study assessed 112 women with at least one previous preterm delivery between 16 and 34 weeks’ gestation. Transvaginal cervical length was measured and cervico-vaginal fluid sampled every two weeks until 28 weeks. If the cervix shortened (<25 mm) before 24 weeks’ gestation, women (cases) were randomly assigned to cerclage or progesterone and sampled weekly. Cytokine concentrations were measured in a subset of cervico-vaginal fluid samples (n = 477 from 78 women) by 11-plex fluid-phase immunoassay.

Results

All 11 inflammatory cytokines investigated were detected in cervico-vaginal fluid from women at high risk of preterm birth, irrespective of later cervical shortening. At less than 24 weeks’ gestation and prior to intervention, women destined to develop a short cervix (n = 36) exhibited higher cervico-vaginal concentrations than controls (n = 42) of granulocyte-macrophage colony-stimulating factor [(GM-CSF) 16.2 fold increase, confidence interval (CI) 1.8–147; p = 0.01] and monocyte chemotactic protein-1 [(MCP-1) 4.8, CI 1.0–23.0; p = 0.05]. Other cytokines were similar between cases and controls. Progesterone treatment did not suppress cytokine concentrations. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-γ and tumour necrosis factor (TNF)-α concentrations were higher following randomization to cerclage versus progesterone (p<0.05). Cerclage, but not progesterone treatment, was followed by a significant increase in cervical length [mean 11.4 mm, CI 5.0–17.7; p<0.001].

Conclusions

Although GM-CSF and MCP-1 cervico-vaginal fluid concentrations were raised, the majority of cervico-vaginal cytokines did not increase in association with cervical shortening. Progesterone treatment showed no significant anti-inflammation action on cytokine concentrations. Cerclage insertion was associated with an increase in the majority of inflammatory markers and cervical length.  相似文献   
80.
With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5‐hr daylight to “northern” summer conditions of 22‐hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号