首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6186篇
  免费   548篇
  国内免费   1篇
  6735篇
  2024年   7篇
  2023年   56篇
  2022年   147篇
  2021年   244篇
  2020年   129篇
  2019年   126篇
  2018年   147篇
  2017年   137篇
  2016年   225篇
  2015年   338篇
  2014年   386篇
  2013年   460篇
  2012年   573篇
  2011年   604篇
  2010年   321篇
  2009年   286篇
  2008年   332篇
  2007年   348篇
  2006年   328篇
  2005年   278篇
  2004年   243篇
  2003年   243篇
  2002年   245篇
  2001年   41篇
  2000年   34篇
  1999年   56篇
  1998年   48篇
  1997年   41篇
  1996年   34篇
  1995年   32篇
  1994年   25篇
  1993年   18篇
  1992年   21篇
  1991年   15篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   12篇
  1982年   6篇
  1981年   9篇
  1980年   13篇
  1978年   5篇
  1977年   5篇
  1976年   9篇
  1961年   5篇
  1960年   5篇
排序方式: 共有6735条查询结果,搜索用时 0 毫秒
901.
902.
Microgel cell electrophoresis has been used with various species to measure breakage of DNA and DNA repair following exposure to the radiomimetic antibiotic, bleomycin. With humans, a high degree of DNA damage is considered to be predictive of cancer susceptibility. Non-isogeneic Xenopus laevis, the South African clawed toad, rarely develop spontaneous or induced cancers. Here, we investigate bleomycin-induced DNA damage and repair in splenic lymphocytes of this species to test consistency with cancer predictability. As X. laevis is pseudotetraploid in nature, while Xenopus tropicalis is diploid, we additionally explore the effect of polyploidy on DNA damage and repair in these vertebrates. The results show that higher doses of bleomycin are required to induce comparable levels of DNA damage in both Xenopus species, than in humans. X. tropicalis, the diploid, is more bleomycin-sensitive than is X. laevis. Additionally, repair rates of damaged DNA of X. laevis lymphocytes are more rapid than those of X. tropicalis, although both are hours slower than human leukocytes. While no data exist on cancer susceptibility in X. tropicalis, the results suggest greater susceptibility to cancer than X. laevis, but less than in humans. Thus, polyploidy serves as a protection against DNA damage and allows more rapid repair.  相似文献   
903.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A–E) in a stable stem–loop that includes the normal 5′ splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem–loop and demonstrated editing at this site in human brain. We have shown that in cell culture, base substitutions to mimic editing at different combinations of the six sites profoundly affect relative splicing at the normal and the upstream alternative splice site, but splicing at the downstream alternative splice site was consistently rare. Editing combinations in different splice variants from human brain were determined and are consistent with the effects of editing on splicing observed in cell culture. As RNA editing usually occurs close to exon/intron boundaries, this is likely to be a general phenomenon and suggests an important novel role for RNA editing.  相似文献   
904.
905.
mRNAs encoding signal sequences are translated on endoplasmic reticulum (ER) -- bound ribosomes, whereas mRNAs encoding cytosolic proteins are translated on cytosolic ribosomes. The partitioning of mRNAs to the ER occurs by positive selection; cytosolic ribosomes engaged in the translation of signal-sequence-bearing proteins are engaged by the signal-recognition particle (SRP) pathway and subsequently trafficked to the ER. Studies have demonstrated that, in addition to the SRP pathway, mRNAs encoding cytosolic proteins can also be partitioned to the ER, suggesting that RNA partitioning in the eukaryotic cell is a complex process requiring the activity of multiple RNA-partitioning pathways. In this review, key findings on this topic are discussed, and the template-partitioning model, describing a hypothetical mechanism for RNA partitioning in the eukaryotic cell, is proposed.  相似文献   
906.
907.
Under conditions of genomic stress, the Mdm locus in human and in mouse is prone to instability manifested as amplification and oncogenesis. The Mdm2 gene is a known oncogene that is amplified in approximately one-third of sarcomas and whose protein product interacts with the tumor suppressor p53. Concimitant with such gene amplification events is the activation and mobilization of endogenous retroelements, typically through the relaxation of epigenetic controlling mechanisms. Processed pseudogenes, which can be formed through endogenous LINE retroelement activity, may indicate increased genomic instability. We have isolated processed pseudogenes for Mdm2 in Mus caroli DNA, likely formed from independent events in different individuals. This is the first identification and characterization of an Mdm2 pseudogene in any organism. Multiple retrotransposition events are suggested by the variable sequence and genomic structure of the identified pseudogenes across all exons and the 3UTR. The high degree of similarity between the gene and each pseudogene, as well as the lack of evidence for an Mdm2 pseudogene in several other species of Mus, indicate evolutionarily recent retrotransposition events leading to the formation of the Mdm2 pseudogenes in M. caroli. Previous studies on the Mdm2 locus in Mus caroli showed amplification and overexpression of this gene on double minute chromosomes in a Mus musculus × Mus caroli interspecific hybrid. The identification of an Mdm2 retropseudogene within this species further highlights the predisposition to instability for this region of the genome.  相似文献   
908.
909.
The present study uses a proteomic approach to link motor function to cerebellar protein expression in 129X1/SvJ, C57BL/6J and nNOS WT mice. Poor performance on the Rota rod, the standard test for motor coordination, was detected in 129X1/SvJ mice. No gross impairments of neurological, cognitive and behavioural functions were observed. Identification and quantification of 48 proteins revealed reduced expression of calbindin, septin 5 and syntaxin binding protein 1 in 129X1/SvJ. In nNos WT glucose-6-phosphate 1 dehydrogenase X was decreased whereas dihydropyrimidinase-related protein-4 was increased. In C57BL/6J stress-70 protein, alpha enolase, NAD-dependent deacetylase sirtuin 2, septin 2, dihydropyrimidinase-related protein-2 and brain derived neurotrophic factor showed elevated levels. Neurological examination, Rota rod test, Morris Water Maze, Multiple-T-Maze, Open field and Elevated plus-maze were employed to study motor, cognitive and behavioural function. Mice were sacrificed and cerebellar tissue was homogenized. Proteins were extracted and separated on two-dimensional gel electrophoresis with subsequent in-gel digestion followed by mass spectrometrical analysis of peptides (MALDI-TOF/TOF-TOF). Quantification of spots was carried out by specific software. A strong association of impaired motor function with altered cerebellar protein expression of calbindin, septin 5 and syntaxin binding protein 1in 129X1/SvJ was observed and is in agreement with previous observations of motor deficiencies in a calbindin knock-out mouse. These results have to be taken into account when using 129X1/SvJ for biochemical, toxicological or gene targeting experiments as well as when studying the above-mentioned proteins or corresponding pathways and cascades in this mouse strain.  相似文献   
910.
hTid-1, a human homolog of the Drosophila tumor suppressor l(2)Tid and a novel DnaJ protein, regulates the activity of nuclear factor kappaB (NF-kappaB), but its mechanism is not established. We report here that hTid-1 strongly associated with the cytoplasmic protein complex of NF-kappaB-IkappaB through direct interaction with IkappaBalpha/beta and the IKKalpha/beta subunits of the IkappaB kinase complex. These interactions resulted in suppression of the IKK activity in a J-domain-dependent fashion and led to the cytoplasmic retention and enhanced stability of IkappaB. Overexpression of hTid-1 by using recombinant baculovirus or adenovirus led to inhibition of cell proliferation and induction of apoptosis of human osteosarcoma cells regardless of the p53 expression status. Adherent cultured cells transduced with Ad.hTid-1 detached from the dish surface. Morphological changes consistent with apoptosis and cell death were evident 48 h after Ad.EGFP-hTid-1 transduction. In contrast, cells transduced with Ad.EGFP or Ad.EGFP-hTd-1DeltaN100, a mutant that has the N-terminal J domain deletion and that lost suppressive activity on IKK, continued to proliferate. Similar data were obtained with A375 human melanoma cells. Ad.EGFP or Ad.EGFP-hTd-1DeltaN100 ex vivo-transduced A375 cells injected subcutaneously into nude mice produced growing tumors, whereas Ad.EGFP-hTid-1-transduced cells did not. Collectively, the data suggest that hTid-1 represses the activity of NF-kappaB through physical and functional interactions with the IKK complex and IkappaB and, in doing so, it modulates cell growth and death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号