首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10571篇
  免费   1066篇
  国内免费   1篇
  2023年   56篇
  2022年   118篇
  2021年   280篇
  2020年   147篇
  2019年   157篇
  2018年   181篇
  2017年   177篇
  2016年   280篇
  2015年   424篇
  2014年   493篇
  2013年   611篇
  2012年   755篇
  2011年   790篇
  2010年   440篇
  2009年   415篇
  2008年   499篇
  2007年   524篇
  2006年   484篇
  2005年   458篇
  2004年   403篇
  2003年   397篇
  2002年   406篇
  2001年   145篇
  2000年   177篇
  1999年   158篇
  1998年   104篇
  1997年   91篇
  1996年   84篇
  1995年   97篇
  1994年   82篇
  1993年   64篇
  1992年   113篇
  1991年   116篇
  1990年   73篇
  1989年   93篇
  1988年   79篇
  1987年   76篇
  1986年   76篇
  1985年   95篇
  1984年   76篇
  1983年   81篇
  1982年   75篇
  1981年   63篇
  1980年   60篇
  1979年   64篇
  1976年   61篇
  1975年   56篇
  1974年   57篇
  1973年   63篇
  1968年   54篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co‐culture in viable form with oxygen‐requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co‐culture of live obligate anaerobes with the human intestinal cell line Caco‐2, was developed. Caco‐2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco‐2 cells had adapted to survive in an oxygen‐reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)‐killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco‐2 cells exposed to live F. prausnitzii than UV‐killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti‐inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co‐culture system that allows obligate anaerobic bacteria to remain viable.  相似文献   
992.
993.

Background

Acute respiratory distress syndrome (ARDS) is a disease associated with a high mortality rate. The initial phase is characterized by induction of inflammatory cytokines and chemokines and influx of circulating inflammatory cells, including macrophages which play a pivotal role in the innate and adaptive immune responses to injury. Growing evidence points to phenotypic heterogeneity and plasticity between various macrophage activation states.

Methods

In this study, gene expression in alveolar macrophages and circulating leukocytes from healthy control subjects and patients with ARDS was assessed by mRNA microarray analysis.

Results

Both alveolar macrophages and circulating leukocytes demonstrated up-regulation of genes encoding chemotactic factors, antimicrobial peptides, chemokine receptors, and matrix metalloproteinases. Two genes, the pro-inflammatory S100A12 and the anti-inflammatory IL-1 decoy receptor IL-1R2 were significantly induced in both cell populations in ARDS patients, which was confirmed by protein quantification. Although S100A12 levels did not correlate with disease severity, there was a significant association between early plasma levels of IL-1R2 and APACHE III scores at presentation. Moreover, higher levels of IL-1R2 in plasma were observed in non-survivors as compared to survivors at later stages of ARDS.

Conclusions

These results suggest a hybrid state of alveolar macrophage activation in ARDS, with features of both alternative activation and immune tolerance/deactivation.. Furthermore, we have identified a novel plasma biomarker candidate in ARDS that correlates with the severity of systemic illness and mortality.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0190-x) contains supplementary material, which is available to authorized users.  相似文献   
994.
995.
996.
The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization--the specialization of two gene copies to perform complementary functions following gene duplication--which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes.  相似文献   
997.
Microarrays are promising tools for cell isolation and detection. However, they have yet to be widely applied in biology. This stems from a lack of demonstration of their sensitivity and compatibility with complex biological samples, and a lack of proof that their use does not induce aberrant cellular effects. Herein, we characterized and optimized a recently developed technology associating antibody microarrays with surface plasmon resonance imaging (SPRi). Using a murine macrophage cell line we demonstrate the binding specificity of our antibody-microarrays and the correlation between SPRi signals and both the number of bound cells, and the level of expression of cell surface markers. Confocal microscopy reveals that cell binding to the chip through antibody-antigen interactions underwent morphological changes reflecting the density of the relevant cell surface marker without affecting cell viability as shown by fluorescent microscopy. The detection threshold of the microarray-SPRi system is lowered 10-fold by applying a polyethylene oxide film to the gold surface of the chip. This increased sensitivity allows the detection of cells representing as little as 0.5% of a mixed population. The potential of this method is illustrated by two applications: characterization of ligand-cell receptor interactions, allowing determination of receptor specificity, and analysis of peripheral blood mononuclear cells, demonstrating the suitability of this tool for the analysis of complex biological samples.  相似文献   
998.
In Arabidopsis, resistance to the necrotrophic fungus Botrytis cinerea is conferred by ethylene via poorly understood mechanisms. Metabolomic approaches compared the responses of the wild‐type, the ethylene‐insensitive mutant etr1‐1, which showed increased susceptibility, and the constitutively active ethylene mutants ctr1‐1 and eto2 both exhibited decreased susceptibility to B. cinerea. Fourier transform–infrared (FT‐IR) spectroscopy demonstrated reproducible biochemical differences between treatments and genotypes. To identify discriminatory mass‐to‐charge ratios (m/z) associated with resistance, discriminant function analysis was employed on spectra derived from direct injection electrospray ionisation‐mass spectrometry on the derived principal components of these data. Ethylene‐modulated m/z were mapped onto Arabidopsis biochemical pathways and many were associated with hydroxycinnamate and monolignol biosynthesis, both linked to cell wall modification. A high‐resolution linear triple quadrupole‐Orbitrap hybrid system confirmed the identity of key metabolites in these pathways. The contribution of these pathways to defence against B. cinerea was validated through the use of multiple Arabidopsis mutants. The FT‐IR microspectroscopy indicated that spatial accumulation of hydroxycinnamates and monolignols at the cell wall to confine disease was linked ot ethylene. These data demonstrate the power of metabolomic approaches in elucidating novel biological phenomena, especially when coupled to validation steps exploiting relevant mutant genotypes.  相似文献   
999.
1000.
Morgan JL  Soto F  Wong RO  Kerschensteiner D 《Neuron》2011,71(6):1014-1021
To integrate information from different presynaptic cell types, dendrites receive distinct patterns of synapses from converging axons. How different afferents in?vivo establish specific connectivity patterns with the same dendrite is poorly understood. Here, we examine the synaptic development of three glutamatergic bipolar cell types converging onto?a common postsynaptic retinal ganglion cell. We find that after axons and dendrites target appropriate synaptic layers, patterns of connections among these neurons?diverge through selective changes in the conversion of axo-dendritic appositions to synapses. This process is differentially regulated by neurotransmission, which is required for the shift from single to multisynaptic appositions of one bipolar cell type but not for maintenance and elimination, respectively, of connections from the other two types. Thus, synaptic specificity among converging excitatory inputs in the?retina emerges via differential synaptic maturation of axo-dendritic appositions and is shaped by neurotransmission in a cell type-dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号