首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6191篇
  免费   548篇
  国内免费   1篇
  6740篇
  2024年   7篇
  2023年   56篇
  2022年   147篇
  2021年   244篇
  2020年   129篇
  2019年   126篇
  2018年   147篇
  2017年   137篇
  2016年   225篇
  2015年   338篇
  2014年   387篇
  2013年   461篇
  2012年   573篇
  2011年   604篇
  2010年   321篇
  2009年   286篇
  2008年   332篇
  2007年   348篇
  2006年   328篇
  2005年   278篇
  2004年   243篇
  2003年   244篇
  2002年   245篇
  2001年   41篇
  2000年   34篇
  1999年   56篇
  1998年   48篇
  1997年   41篇
  1996年   34篇
  1995年   32篇
  1994年   25篇
  1993年   18篇
  1992年   22篇
  1991年   15篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   13篇
  1982年   6篇
  1981年   9篇
  1980年   13篇
  1978年   5篇
  1977年   5篇
  1976年   9篇
  1961年   5篇
  1960年   5篇
排序方式: 共有6740条查询结果,搜索用时 15 毫秒
241.
Ciliates provide a powerful system to analyze the evolution of duplicated alpha-tubulin genes in the context of single-celled organisms. Genealogical analyses of ciliate alpha-tubulin sequences reveal five apparently recent gene duplications. Comparisons of paralogs in different ciliates implicate differing patterns of substitutions (e.g., ratios of replacement/synonymous nucleotides and radical/conservative amino acids) following duplication. Most substitutions between paralogs in Euplotes crassus, Halteria grandinella and Paramecium tetraurelia are synonymous. In contrast, alpha-tubulin paralogs within Stylonychia lemnae and Chilodonella uncinata are evolving at significantly different rates and have higher ratios of both replacement substitutions to synonymous substitutions and radical amino acid changes to conservative amino acid changes. Moreover, the amino acid substitutions in C. uncinata and S. lemnae paralogs are limited to short stretches that correspond to functionally important regions of the alpha-tubulin protein. The topology of ciliate alpha-tubulin genealogies are inconsistent with taxonomy based on morphology and other molecular markers, which may be due to taxonomic sampling, gene conversion, unequal rates of evolution, or asymmetric patterns of gene duplication and loss.  相似文献   
242.
Muscle function depends on an adequate ATP supply to sustain the energy consumption associated with Ca(2+) cycling and actomyosin sliding during contraction. In this regulation of energy homeostasis, the creatine kinase (CK) circuit for high energy phosphoryl transfer between ATP and phosphocreatine plays an important role. We earlier established a functional connection between the activity of the CK system and Ca(2+) homeostasis during depolarization and contractile activity of muscle. Here, we show how CK activity is coupled to the kinetics of spontaneous and electrically induced Ca(2+) transients in the sarcoplasm of myotubes. Using the UV ratiometric Ca(2+) probe Indo-1 and video-rate confocal microscopy in CK-proficient and -deficient cultured cells, we found that spontaneous and electrically induced transients were dependent on ryanodine-sensitive Ca(2+) release channels, sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps, extracellular calcium, and functional mitochondria in both cell types. However, at increasing sarcoplasmic Ca(2+) load (induced by electrical stimulation at 0.1, 1, and 10 Hz), the Ca(2+) removal rate and the amount of Ca(2+) released per transient were gradually reduced in CK-deficient (but not wild-type) myotubes. We conclude that the CK/phosphocreatine circuit is essential for efficient delivery of ATP to the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps and thereby directly influences sarcoplasmic reticulum refilling and the kinetics of the sarcoplasmic Ca(2+) signals.  相似文献   
243.
244.
Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tularensis and CR3 is an important receptor for its phagocytosis. Here we confirm that efficient attachment and uptake of the highly virulent Type A F. tularensis spp. tularensis strain Schu S4 by human monocyte-derived macrophages (hMDMs) requires complement C3 opsonization and CR3. However, despite a>40-fold increase in uptake following C3 opsonization, Schu S4 induces limited pro-inflammatory cytokine production compared with non-opsonized Schu S4 and the low virulent F. novicida. This suggests that engagement of CR3 by opsonized Schu S4 contributes specifically to the immune suppression during and shortly following phagocytosis which we demonstrate by CD11b siRNA knockdown in hMDMs. This immune suppression is concomitant with early inhibition of ERK1/2, p38 MAPK and NF-κB activation. Furthermore, TLR2 siRNA knockdown shows that pro-inflammatory cytokine production and MAPK activation in response to non-opsonized Schu S4 depends on TLR2 signaling providing evidence that CR3-TLR2 crosstalk mediates immune suppression for opsonized Schu S4. Deletion of the CD11b cytoplasmic tail reverses the CR3-mediated decrease in ERK and p38 activation during opsonized Schu-S4 infection. The CR3-mediated signaling pathway involved in this immune suppression includes Lyn kinase and Akt activation, and increased MKP-1, which limits TLR2-mediated pro-inflammatory responses. These data indicate that while the highly virulent F. tularensis uses CR3 for efficient uptake, optimal engagement of this receptor down-regulates TLR2-dependent pro-inflammatory responses by inhibiting MAPK activation through outside-in signaling. CR3-linked immune suppression is an important mechanism involved in the pathogenesis of F. tularensis infection.  相似文献   
245.
Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a compatible cifA-expressing strain rescue CI. Thus, cif-mediated CI confers a relative fitness advantage to females transmitting Wolbachia. However, whether cif sequence variation underpins incompatibilities between Wolbachia strains and variation in CI penetrance remains unknown. Here, we engineer Drosophila melanogaster to transgenically express cognate and non-cognate cif homologs and assess their CI and rescue capability. Cognate expression revealed that cifA;B native to D. melanogaster causes strong CI, and cognate cifA;B homologs from two other Drosophila-associated Wolbachia cause weak transgenic CI, including the first demonstration of phylogenetic type 2 cifA;B CI. Intriguingly, non-cognate expression of cifA and cifB alleles from different strains revealed that cifA homologs generally contribute to strong transgenic CI and interchangeable rescue despite their evolutionary divergence, and cifB genetic divergence contributes to weak or no transgenic CI. Finally, we find that a type 1 cifA can rescue CI caused by a genetically divergent type 2 cifA;B in a manner consistent with unidirectional incompatibility. By genetically dissecting individual CI functions for type 1 and 2 cifA and cifB, this work illuminates new relationships between cif genotype and CI phenotype. We discuss the relevance of these findings to CI’s genetic basis, phenotypic variation patterns, and mechanism.  相似文献   
246.
Background and AimsGlobal plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness.MethodsWe evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort.Key ResultsWhile intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37–0.64), and almost all traits had detectable associations with plant fitness.ConclusionsIntraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.  相似文献   
247.
It has been generally accepted that enzyme activity requires a minimal hydration of about 0.2 g H2O g(-1) protein. This fits well with evidence that hydration above this level is associated with the onset of intramolecular motions. The influence of enzyme hydration on the hydrolysis of substrate by Candida rugosa Lipase B and pig liver esterase was investigated. Each enzyme was studied as a powder at various hydration levels, using vapour phase ethyl butyrate as substrate. This procedure allows the separation of those effects that are due to hydration from those arising from diffusional constraints. We found hydrolytic activity in both enzymes at all hydration levels above zero (between 0.054-0.47 and 0.029-0.60 g H2O g(-1) protein, respectively) that were investigated. The lowest hydration level investigated, <0.03 g H2O g(-1) enzyme, corresponded to a water/enzyme mole ratio of 100 and a coverage of about 10% of the enzyme surface by water molecules. The hydrolytic activity of both enzymes was dependent on protein hydration. However, since the hydrolysis of ethyl butyrate requires water as a second substrate, the absence of activity at zero hydration does not rule out the possibility of enzyme activity in the absence of water. These results suggest that the properties conferred on proteins by water, at least above 10% surface coverage (in this case corresponding to a hydration level of 0.03 g H2O g(-1) protein), are not a requirement for enzyme catalysis.  相似文献   
248.
BACKGROUND: The etiology of developmental delay in children is frequently unknown. Increasing evidence supports the possibility that environmental and occupational factors might be part of the basis for such delays. This study focuses on the development of children born to mothers who were exposed during their pregnancy to waste anesthetic gases. METHODS: The study population included 40 children aged 5-13 years born to female anesthesiologists and nurses working in operating rooms (OpRs) exposed to waste anesthetic gases, and 40 unexposed children born to female nurses and physicians who worked in hospitals during their pregnancy but did not work in OpRs. The unexposed group was matched for children's age and gender and maternal occupation (nurses vs. doctors). By means of standardized developmental tests, the present study population was evaluated for their medical and neurodevelopmental state. Questionnaires were given for the detection of attention and activity levels as perceived by the parents. Additional questionnaires dealt with information concerning developmental milestones, maternal and fetal morbidity, and gynecological history. RESULTS: No differences were noted between the groups as newborns or in developmental milestones at the age of 5-13 years; however, the mean score of gross motor ability was significantly lower in the exposed versus the unexposed group. Additionally, the mean score of the DSM-III-R Parent-Teacher Questionnaire (PTQ) (i.e., measure of inattention/hyperactivity) was higher in the exposed group. The level of exposure, as measured by the number of weekly hours in the OpRs, was significantly and negatively correlated with fine motor ability and the score of IQ performance. CONCLUSIONS: Our study supports the hypothesis that occupational exposure to anesthetic gases might be a risk factor for minor neurological deficits of children born to mothers who work in OpRs and therefore indicates the need for more studies in this area and perhaps more caution among OpR pregnant women and employers.  相似文献   
249.
Amylin is a member of the calcitonin family of hormones cosecreted with insulin by pancreatic beta cells. Cell culture assays suggest that amylin could affect bone formation and bone resorption, this latter function after its binding to the calcitonin receptor (CALCR). Here we show that Amylin inactivation leads to a low bone mass due to an increase in bone resorption, whereas bone formation is unaffected. In vitro, amylin inhibits fusion of mononucleated osteoclast precursors into multinucleated osteoclasts in an ERK1/2-dependent manner. Although Amylin +/- mice like Amylin-deficient mice display a low bone mass phenotype and increased bone resorption, Calcr +/- mice display a high bone mass due to an increase in bone formation. Moreover, compound heterozygote mice for Calcr and Amylin inactivation displayed bone abnormalities observed in both Calcr +/- and Amylin +/- mice, thereby ruling out that amylin uses CALCR to inhibit osteoclastogenesis in vivo. Thus, amylin is a physiological regulator of bone resorption that acts through an unidentified receptor.  相似文献   
250.
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号