首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6296篇
  免费   584篇
  国内免费   1篇
  2024年   5篇
  2023年   47篇
  2022年   114篇
  2021年   244篇
  2020年   130篇
  2019年   129篇
  2018年   152篇
  2017年   140篇
  2016年   230篇
  2015年   339篇
  2014年   390篇
  2013年   466篇
  2012年   579篇
  2011年   607篇
  2010年   324篇
  2009年   289篇
  2008年   336篇
  2007年   351篇
  2006年   343篇
  2005年   285篇
  2004年   245篇
  2003年   245篇
  2002年   254篇
  2001年   47篇
  2000年   39篇
  1999年   64篇
  1998年   53篇
  1997年   45篇
  1996年   37篇
  1995年   32篇
  1994年   26篇
  1993年   22篇
  1992年   27篇
  1991年   25篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1984年   16篇
  1983年   18篇
  1982年   8篇
  1981年   10篇
  1980年   13篇
  1978年   6篇
  1977年   6篇
  1976年   9篇
  1961年   5篇
  1960年   5篇
排序方式: 共有6881条查询结果,搜索用时 15 毫秒
111.
Cilia are microtubule‐based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.  相似文献   
112.
The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT–CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission.  相似文献   
113.
Concomitant hip adduction during squatting has long been advocated as a rehabilitative method to preferentially activate the VMO in persons with patellofemoral pain. This practice however has been based on research using surface electrodes which are prone to crosstalk from neighboring muscles (i.e., adductor magnus). This study sought to determine whether activation levels of the VMO relative to the VL while squatting with hip adduction would differ based on the choice of recording electrode. Ten healthy subjects performed a maneuver with hip adduction and without hip adduction. The mean VMO and VL activation levels were recorded simultaneously with surface and indwelling fine-wire electrodes. For both recording electrodes, the VMO and VL activity increased significantly with the addition of hip adduction (p < 0.05). However, the increase in VMO activation was more pronounced with surface electrodes, resulting in a significantly higher VMO:VL ratio with the incorporation of hip adduction compared to without hip adduction (p < 0.05). No difference in the VMO:VL ratio was observed between the two squat conditions for the fine-wire electrodes (p > 0.05). Our findings suggest that the VMO:VL activation ratio when squatting with hip adduction is influenced by electrode choice.  相似文献   
114.
115.
Although goals change and reflect the issues of the time, two primary goals of education in a democracy have remained constant over time. The first goal is to educate for vocational competence and the second is to produce caring, intelligent, and wise citizens. Articulating the connection of design education concepts to the economy and social responsibility is beneficial in educating K–12 students. This article illustrates the ways in which design education fosters the skills needed in the global twenty-first century to help students make a better life for themselves and their community and improve the world. I articulate ways to incorporate design as an essential component into a comprehensive visual arts program.  相似文献   
116.
Introductions of sable antelope (Hippotragus niger) can be difficult due to the potential ensuing aggression compounded by their large horns. The goal was to use hormonal assays and behavioral analyses to evaluate the success of an introduction of 2 adult females at Lincoln Park Zoo. The objectives were to (a) document behavioral and hormonal changes in 2 female sable antelope during the introduction, (b) compare fecal glucocorticoid metabolites (FGM) in each individual during the introduction stages, (c) measure fecal androgen metabolites (FAM) during introduction and compare with dominance rank and observed aggression, and (d) monitor estrous cycle synchronization. Results demonstrate that FGM were higher before than during and after the introduction. Behavioral observations indicated limited aggression between females, although the keeper survey results revealed that the new female was more dominant and had higher mean FGM and FAM than the resident. Both sable antelope were reproductively active throughout the year. Results indicate that fecal hormone analysis can provide zoo management with valuable information to minimize the risk of aggression, injury, and stress during introductions of nonhuman animals.  相似文献   
117.
We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (-262;-844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT -262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT, respectively, p < 0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF-308 SNP was associated with catalase activity (p = 0.04 and p = 0.8). CAT -262 T carriers were less frequent in highly exposed miners (OR = 0.39 [0.20–0.78], p = 0.007). In CAT -262 T carriers only, catalase activity decreased with high dust exposure (p = 0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT -262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity.  相似文献   
118.
Rhizoremediation of petroleum contaminants is a phytoremediation process that depends on interactions among plants, microbes, and soils. Trees and grasses are commonly used for phytoremediation, with trees typically being chosen for remediation of BTEX while grasses are more commonly used for remediation of PAHs and total petroleum hydrocarbons. The objective of this review was to compare the effectiveness of trees and grasses for rhizoremediation of hydrocarbons and address the advantages of each vegetation type. Grasses were more heavily represented in the literature and therefore demonstrated a wider range of effectiveness. However, the greater biomass and depth of tree roots may have greater potential for promoting environmental conditions that can improve rhizoremediation, such as increased metabolizable organic carbon, oxygen, and water. Overall, we found little difference between grasses and trees with respect to average reduction of hydrocarbons for studies that compared planted treatments with a control. Additional detailed investigations into plant attributes that most influence hydrocarbon degradation rates should provide data needed to determine the potential for rhizoremediation with trees or grasses for a given site and identify which plant characteristics are most important.  相似文献   
119.
120.
High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10–12) leaf, young (juvenile, LPI 4–6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.Mass spectrometry (MS)-based proteomics has experienced tremendous growth in recent years, leading to the establishment of numerous protocols, platforms, and workflows for the characterization of protein expression at the genome level (1). Although these advancements have facilitated comprehensive proteomic investigations of simple bacterial isolates and microbial communities, the application of MS-based proteomics for plants and other higher eukaryotes remains underdeveloped. Recently, large-scale proteomic studies have been directed at characterization of Populus, a woody perennial model organism. With the recent release and subsequent curation of the P. trichocarpa genome (2), these large-scale MS-based proteomic investigations offer the potential to introduce new biological insights into woody perennial plant biology (3, 4, 5). For example, we have recently demonstrated the ability to measure ∼17% of the Populus proteome by coupling multidimensional liquid chromatography (MudPIT)1 with nano-electrospray tandem mass spectrometry (2D-LC-MS/MS) (6). Relative to the two-dimensional gel-based approaches (7), MudPIT provides enhanced separation and when used in conjunction with MS/MS, surpasses the throughput and number of identifiable proteins detected in complex mixtures (8). Although we have demonstrated the general effectiveness of this approach, the identification and quantitation of the proteins expressed in a plant cell or tissue are still notoriously complicated by a number of factors, including the size and complexity of plant genomes, abundance of protein variants, as well as the dynamic range of protein identification. To overcome these challenges, improvements are needed in sample preparation, MS instrumentation, and data interpretation.The architecture of plant cell walls provides resistance to chemical and biological degradation, thus requiring mechanical and detergent-based lysis for optimal proteome analysis. However, this criterion presents a major challenge for plant proteomic research using electrospray mass spectrometry, as detergent-containing solutions can impede enzymatic digestion and cause significant analyte suppression (9). Therefore, most plant proteomic studies using the “MudPIT” strategy apply mechanical disruption in conjunction with a detergent-free preparation method (10). Typically, strong chaotropic agents such as urea and guanidine hydrochloride are used for the extraction, denaturation, and digestion of proteins. In a recent study, Mann et al. (2009) introduced a filter-aided sample preparation (FASP) method that uses and effectively removes sodium dodecyl sulfate (SDS) before enzymatic digestion and electrospray analysis (11). This study demonstrated enhanced retrieval of peptides from biological materials, yielding a more accurate representation of the proteome. We developed a similar experimental approach for extraction of proteins from plant tissue to obtain a more comprehensive, unbiased proteome characterization well beyond that achievable with currently available methods. Similar to the FASP method, we demonstrate the power of SDS for proteomic sample preparation, not only in its ability to more-thoroughly lyse cells, but also its ability to better solubilize both hydrophilic and hydrophobic proteins. This powerful attribute gives proteolytic enzymes maximum opportunity to generate peptides specific to their cleavage potential so that at least a few representative peptides can be obtained for proteins that would have otherwise been discarded or lost because of insolubility, e.g. membrane-bound proteins. Rather than performing a buffer exchange with urea, depletion of SDS is achieved by precipitating proteins out of solution using trichloroacetic acid.Characterization of protein expression in plants is further complicated by the heterogeneous mixture of various cell types, each with a unique proteome signature and individualized response to environmental chemical or physical signals. This inherent complexity of plant proteomes and the large dynamic range in protein abundance overwhelms current analytical platforms (12). Moreover, biochemical regulatory networks in plants are more elaborate and dynamic than in microbial species; consequently, many biological components are left undiscovered, including modified peptides and low-abundance proteins (13, 14, 15). Recent developments in ion-trap MS instrumentation, namely the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have demonstrated improved ability to comprehensively characterize complex proteomics samples (16). Featuring a newly designed ion source and a two-chamber ion trap mass analyzer, the LTQ Velos achieves greater dynamic range, sensitivity, and speed of spectral acquisition when applied to complex proteomic samples. Cumulatively, the technological advancements afford substantial increases in the detection and identification of both proteins and unique peptides when compared with existing state-of-the-art technologies. Therefore, to satisfy the need for depth of proteome characterization in plants, we apply the newly developed LTQ Velos for mass spectrometry measurements of the Populus proteome.For most terrestrial plants, life begins and ends in the same physical location. For woody perennial plants, this sedentary lifestyle may last thousands of years. One consequence of this lifestyle is that each plant typically experiences dramatic changes in its ambient environment throughout its lifetime and, at any given time, equilibrium between endogenous growth processes and exogenous constraints exerted by the environment must be tightly controlled. To survive under varying environmental conditions, temporal plastic responses evoke patterns of protein expression that progressively influence morphological, anatomical, and functional traits of three principal organs—leaf, root, and stem. Collectively and individually, these organs operate to perceive and respond to periodic and chronic environment conditions. Currently, a comprehensive understanding of the spatial variation in protein expression patterns across the organ types is lacking for woody perennial plants, in which most large-scale proteome analyses with Populus were performed on isolated organs, tissues, organelles, or subcellular structures. For this reason, we combined the state-of-the-art LTQ-Velos platform with the SDS/TCA sample preparation methodology to generate a high-coverage proteome atlas of the principal organ types from Populus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号