首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1359篇
  免费   180篇
  1539篇
  2023年   13篇
  2022年   19篇
  2021年   43篇
  2020年   22篇
  2019年   25篇
  2018年   37篇
  2017年   34篇
  2016年   51篇
  2015年   65篇
  2014年   78篇
  2013年   77篇
  2012年   129篇
  2011年   119篇
  2010年   55篇
  2009年   57篇
  2008年   73篇
  2007年   91篇
  2006年   66篇
  2005年   57篇
  2004年   40篇
  2003年   35篇
  2002年   39篇
  2001年   29篇
  2000年   19篇
  1999年   25篇
  1998年   19篇
  1997年   11篇
  1996年   16篇
  1995年   14篇
  1994年   4篇
  1993年   4篇
  1992年   14篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   8篇
  1987年   19篇
  1986年   9篇
  1985年   5篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1979年   10篇
  1976年   8篇
  1975年   5篇
  1974年   10篇
  1973年   10篇
  1970年   3篇
  1969年   5篇
  1967年   3篇
排序方式: 共有1539条查询结果,搜索用时 0 毫秒
61.

Background  

Upstream open reading frames (uORFs) can mediate translational control over the largest, or major ORF (mORF) in response to starvation, polyamine concentrations, and sucrose concentrations. One plant uORF with conserved peptide sequences has been shown to exert this control in an amino acid sequence-dependent manner but generally it is not clear what kinds of genes are regulated, or how extensively this mechanism is invoked in a given genome.  相似文献   
62.
Open syntaxin docks synaptic vesicles   总被引:3,自引:0,他引:3       下载免费PDF全文
Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking.  相似文献   
63.
64.
BackgroundIn 2020, the SARS-CoV-2 (COVID-19) pandemic and lockdown control measures threatened to disrupt routine childhood immunisation programmes with early reports suggesting uptake would fall. In response, public health bodies in Scotland and England collected national data for childhood immunisations on a weekly or monthly basis to allow for rapid analysis of trends. The aim of this study was to use these data to assess the impact of different phases of the pandemic on infant and preschool immunisation uptake rates.Methods and findingsWe conducted an observational study using routinely collected data for the year prior to the pandemic (2019) and immediately before (22 January to March 2020), during (23 March to 26 July), and after (27 July to 4 October) the first UK “lockdown”. Data were obtained for Scotland from the Public Health Scotland “COVID19 wider impacts on the health care system” dashboard and for England from ImmForm.Five vaccinations delivered at different ages were evaluated; 3 doses of “6-in-1” diphtheria, tetanus, pertussis, polio, Haemophilus influenzae type b, and hepatitis B vaccine (DTaP/IPV/Hib/HepB) and 2 doses of measles, mumps, and rubella (MMR) vaccine. This represented 439,754 invitations to be vaccinated in Scotland and 4.1 million for England. Uptake during the 2020 periods was compared to the previous year (2019) using binary logistic regression analysis. For Scotland, uptake within 4 weeks of a child becoming eligible by age was analysed along with geographical region and indices of deprivation. For Scotland and England, we assessed whether immunisations were up-to-date at approximately 6 months (all doses 6-in-1) and 16 to 18 months (first MMR) of age.We found that uptake within 4 weeks of eligibility in Scotland for all the 5 vaccines was higher during lockdown than in 2019. Differences ranged from 1.3% for first dose 6-in-1 vaccine (95.3 versus 94%, odds ratio [OR] compared to 2019 1.28, 95% confidence intervals [CIs] 1.18 to 1.39) to 14.3% for second MMR dose (66.1 versus 51.8%, OR compared to 2019 1.8, 95% CI 1.74 to 1.87). Significant increases in uptake were seen across all deprivation levels.In England, fewer children due to receive their immunisations during the lockdown period were up to date at 6 months (6-in-1) or 18 months (first dose MMR). The fall in percentage uptake ranged from 0.5% for first 6-in-1 (95.8 versus 96.3%, OR compared to 2019 0.89, 95% CI 0.86– to 0.91) to 2.1% for third 6-in-1 (86.6 versus 88.7%, OR compared to 2019 0.82, 95% CI 0.81 to 0.83).The use of routinely collected data used in this study was a limiting factor as detailed information on potential confounding factors were not available and we were unable to eliminate the possibility of seasonal trends in immunisation uptake.ConclusionsIn this study, we observed that the national lockdown in Scotland was associated with an increase in timely childhood immunisation uptake; however, in England, uptake fell slightly. Reasons for the improved uptake in Scotland may include active measures taken to promote immunisation at local and national levels during this period and should be explored further. Promoting immunisation uptake and addressing potential vaccine hesitancy is particularly important given the ongoing pandemic and COVID-19 vaccination campaigns.

Fiona McQuaid and colleagues assess the uptake of infant and pre-school immunisations in Scotland and England during the COVID-19 pandemic.  相似文献   
65.
During 2013–14 and 2015–16, A/H1N1pdm09 live attenuated influenza vaccine (LAIV) viruses replicated inefficiently in primary human nasal epithelial cells (hNEC). This led to reduced vaccine effectiveness (VE) in quadrivalent formulations, mediated by inter-strain competition. By mutating the haemagglutinin (HA) protein, we aimed to enhance hNEC replication of a novel A/H1N1pdm09 vaccine strain to overcome competition and improve VE. Combinations of N125D, D127E, D222G and R223Q substitutions were introduced to the HA protein of A/Slovenia/2903/2015 (A/SLOV15). A/SLOV15 S13, containing all four HA substitutions, produced approximately 1000-fold more virus than parental V1 during hNEC infection. Immunogenicity in ferrets was increased by approximately 10-fold, without compromising yield in eggs or antigenic match to wild-type (wt) reference strains. Despite S13 and V1 being antigenically similar, only S13 protected ferrets from wt virus shedding and fever post-challenge. Crucially, these data suggested that enhanced fitness allowed S13 to overcome inter-strain competition in quadrivalent LAIV (QLAIV). This improved efficacy was later validated by real-world VE data. S13 displayed increased binding avidity to a mammalian-like α-2,6 receptor analogue (6-SLN), relative to V1, while maintaining avian-like 3-SLN avidity. In silico modelling of the HA receptor binding site revealed additional interactions in the S13:6-SLN binding network and a mild increase in 6-SLN binding energy, indicating a possible mechanism for increased α-2,6 receptor-binding avidity. These data confirm that rational HA mutagenesis can be used to optimise hNEC replication and VE for A/H1N1pdm09 LAIV viruses.  相似文献   
66.
SC Su  J Seo  JQ Pan  BA Samuels  A Rudenko  M Ericsson  RL Neve  DT Yue  LH Tsai 《Neuron》2012,75(4):675-687
N-type voltage-gated calcium channels localize to?presynaptic nerve terminals and mediate key events?including synaptogenesis and neurotransmission.?While several kinases have been implicated in the modulation of calcium channels, their impact on presynaptic functions remains unclear. Here we report that the N-type calcium channel is a substrate for cyclin-dependent kinase 5 (Cdk5). The pore-forming α(1) subunit of the N-type calcium channel is phosphorylated in the C-terminal domain, and phosphorylation results in enhanced calcium influx due to increased channel open probability. Phosphorylation of the N-type calcium channel by Cdk5 facilitates neurotransmitter release and alters presynaptic plasticity by increasing the number of docked vesicles at the synaptic cleft. These effects are mediated by an altered interaction between N-type calcium channels and RIM1, which tethers presynaptic calcium channels to the active zone. Collectively, our results highlight a molecular mechanism by which N-type calcium channels are regulated by Cdk5 to affect presynaptic function.  相似文献   
67.
Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.  相似文献   
68.
Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.  相似文献   
69.
Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1–matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide–sensitive factor–activating protein receptor (SNARE)–mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.  相似文献   
70.
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-infected clones did not demonstrate the same significant association with the genomic environment of the integrated provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution, which was highly stable over ∼8 years. These results suggest that there are significant differences in the selection forces that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号